
Rough Paths Spring 2024

1 Motivation

Consider a classical ODE
Ẏt = f(t, Yt) Y0 = y ∈ Rn

Then we know that ∃! solution if f is Lipschitz in Yt (in L1
t way). An important subclass are controlled

ODEs which are of the form
Ẏt = f(Yt)Ẋt Y0 = y

for X, f, and y given. For nice enough f and X,

Yt = y +

∫ t

0

f(Ys)dXs

proceed by Picard iteration, find a fixed point. We can think of X as an input. We are interested in the
map X 7→ Y . Formally, ∆Y = f(Y )∆X or dYt = f(Yt)dXt.

• What if X is rough? X ∈ Cα, 0 < α < 1. For smooth f , we should expect Y inherits same regularity
as X → Y ∈ Cα

• Strategy: f ϵ → f , gϵ → g where f ϵ, gϵ ∈ C∞.∫ t

0

f ϵs ġ
ϵ
s ds→

∫ t

0

fsdgs

1. If f ϵ → f uniformly (f ∈ C) and ġϵ → ġ uniformly (g ∈ C1), then this integral makes sense.

2. If f ϵ → f uniformly (f ∈ C) and ġϵ → ġ in L1 (g ∈W 1,1)∣∣∣∣∫ f ϵs ġ
ϵ
s ds−

∫
fsġs ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

f ϵs(ġϵs − ġs) ds+

∫ t

0

(f ϵs − fs)ġs ds

∣∣∣∣ (1)

≤ C||ġϵ − ġ||1 + ||f ϵ − f ||∞||ġ||1 → 0 (2)

Further, integrating by parts, we see∫ t

0

fsġs ds = ftgt − f0g0 −
∫ t

0

gsḟs ds

so f ∈W 1,1 and g ∈ C also works. Stronger: f ∈ C1, g ∈ C.

• Can we interpolate? f ∈ Cα, g ∈ C1−α? NOPE.

1.1 Young’s integration theory

We can approximate the integral ∫ 1

0

fsdgs = lim
|∆|→0

N−1∑
i=1

fti(gti+1
− gti)

where ∆ = {0 = t0 < t1 < · · · < tN = 1} and |∆| = max{|ti+1 − ti|}. For a small interval [s, t] ,∫ t

s

frdgr = fs(gt − gs) +Rs,t = fsδgs,t +Rs,t

where the remainder Rs,t is of higher order. For f ∈ Cα and g ∈ Cβ , α, β > 0 what can we say?

Rs,t =

∫ t

s

(fr − fs)dgr = δft,sδgt,s +R′
t,s

where hopefully R′
t,s is of hopefully even higher order. Then since f ∈ Cα and g ∈ Cβ ,

Rs,t ≤ [f ]α[g]β |t− s|α+β +R′
s,t

Then, considering the whole integral as the sum of integrals over the small intervals [ti, ti+1],∣∣∣∣∣
∫ 1

0

frdgr −
N−1∑
i=0

fti(gti+1
− gti)

∣∣∣∣∣ ≤ [f ]α[g]β

N−1∑
i=0

|ti+1 − ti|α+β (3)

= [f ]α[g]β

N−1∑
i=0

|ti+1 − ti|α+β−1|ti+1 − ti| (4)

≤ [f ]α[g]β |∆|α+β−1 → 0 (|∆| → 0) (5)

for α+ β > 1 so that α+ β − 1 > 0.

Theorem 1.1. (Young’s integration) If α + β > 1, then
∫ 1

0
fsdgs = lim

|∆|→0

N−1∑
i=0

fti(gti+1
− gti) exists for

f ∈ Cα and g ∈ Cβ and (f, g) 7→
∫ t
0
fsdgs is bilinear and continuous* on Cα × Cβ .
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Note: Cα, Cβ are not separable spaces. We mean continuity in fn → f uniformly with bounded seminorm
supn∈N[f ]α <∞

We can think of this integral
∫ 1

0
frdgr = ⟨fġ, 1[s,t]⟩ as testing fġ against 1[s,t] (which we can approximate

by test functions).

Yt = f(Yt)dXt, Y0 = y → Yt = y +

∫ t

0

f(Ys)dXs (YDE) (6)

For f smooth and X ∈ Cα, we can hope (at best) Y ∈ Cα. Then, f(Y ) ∈ Cα. Thus, for α+α > 1 → α > 1/2,
we can use Young’s integration.

Theorem 1.2. For α > 1/2, f smooth, X ∈ Cα, then ∃! solution Y to YDE and X 7→ Y is locally lipschitz
continuous.

1.2 Brownian motion as a motivating example

E[(Bt −Bs)
2] = t− s→ “Bt −Bs ∼ |t− s|1/2” that is the BM has regularity less than 1/2.

Theorem 1.3. For 0 < α < 1,

1. If α < 1/2, B ∈ Cα a.s.

2. If α ≥ 1/2, B /∈ Cα a.s. (not even locally) → can’t do Young’s integration

3. B is nowhere differentiable and infinite variation a.s. → can’t use BV theory

So, we need a new theory of integration to deal with Brownian motion paths.
Consider again our ODE, but we allow X to be brownian motion.{

dYt = f(Yt)dXt

Y0 = y,X0 = 0

X and Y could be in Rd or infinite dimensional. Ex:
dY 1

t = dX1
t

dY 2
t = Y 1

t dX
2
t

y = 0

→

{
Y 1
t = X1

t

Y 2
t =

∫ t
0
X1
sdX

2
s

If Xi are BM, then Young integral or Riemann-Stieltjes integration do not work since Xi is not regular
enough.

We can think of the Brownian motion in two ways: (1) as a process Bt that a sequence of real-valued
random variables, i.e. at every time t, Bt is a real-valued random variable, or (2) as a random variable
on the space of paths, i.e. for each B(ω) is an entire path. From this second interpretation, we have the
definition of a Wiener measure, that is, the probability distribution on the space of continuous functions g
with g(0) = 0 induced by a Brownian motion.

Let µ be a Wiener measure on C[0, 1]. That is, µ(A) = P[B(ω) ∈ A] for A ⊂ [0, 1].

Theorem 1.4. There exists no separable Banach space B ⊂ C[0, 1] such that

1. µ is supported on B

2. (f, g) 7→
∫ 1

0
f(t)g′(t) dt on C × C1 extends continuous to B × B

We can think of B as a regularity class constraint. This theorem says that there are no B on which we

can define
∫ 1

0
fdg that also contains almost all the paths of a BM.

Recall the Stieltjes integral

I :=

∫ 1

0

X1
sdX

2
s = lim

|∆|→0

∑
[s,t]∈∆

X1
s δX

2
s,t

Take {∆n} to be the sequence of dyadic partitions (nested and equally spaced)

In :=

2n−1∑
k=0

X1
k/2nδX

2
k/2n,(k+1)/2n

Let As,t = X1
s δX

2
s,t

In − In+1 =

2n−1∑
k=0

[
Ak/2n,(k+1)/2n −Ak/2n,(2k+1)/2n+1 −A(2k+1)/2n+1,(k+1)/2n

]

=

2n−1∑
k=0

δX1
k/2n,(2k+1)/2n+1δX2

(2k+1)/2n+1,(k+1)/2n

Since E[(δXi
s,t)

2] = t− s

≈
2n−1∑
k=0

|tn+1 − tn| = O(1)
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If we use Young’s inequality to get (δXi)2 we find that the In are not Cauchy. We should show {In} Cauchy
in a different norm.

E[(In − In+1)2] = E

2n−1∑
j,k

δX1
j/2n,j+1/2nδX

1
k/2n,2k+1/2n+1δX2

2j+1/2n+1δX2
2k+1/2n+1,k+1/2n

 (7)

=

2n−1∑
k=0

(
E
[
δX1

k/2n,2k+1/2n+1

])2 (
E
[
δX1

2k+1/2n+1,k+1/2n

])2
by independence of increments, only j = k terms remain.

=

2−n−11∑
k=0

2−n−1 · 2−n−1 =
1

4

2n−1∑
k=0

2−n ≈ 2−n

So,
||In − In+1||L2(Ω) ≤ C2−n/2

Now, suppose X1 = X2 = X, then we expect
∫ t
0
XsdXs = 1

2X
2
t .

“Proof.” IBP ∫ t

0

XsdXs = X2
t −

∫ t

0

XsdXs ⇒
∫ t

0

XsdXs =
1

2
X2
t “□”

Repeat the partition argument:

I∆ =
∑

[s,t]∈∆

XsδXs,t, E[I∆] =
∑

[s,t]∈∆

E[Xs]E[δXs,t] = 0

since Xs and δXs,t are independent. However, E
[
1
2X

2
t

]
= 1

2 t
2. In reality, in L2(Ω) limit,

lim
|∆|→0

I∆ =
X2
t

2
− t

2

Conclusion: Stochastic integral does not satisfy IBP, Chain Rule, Product Rule, etc. In classical calculus,
quadratic size increments go to 0, but for BM quadratic size increments go to dt

What, instead of the left endpoint, we take the midpoint?

Ĩ∆ =
∑

[s,t]∈∆

Xs+t/2δXs,t

Ĩ∆ also has limit
X2

t

2 . This is the Stratonovich integral
∫ t
0
Xs ◦ dXs.

Takeaways

1. There might not be an analytically unique choice of solution

2. The iterated integrals
∫ t
0
Xi
sdX

i
s are important

2 Rough Paths

Moving forward, we are concerned with the following type of problem which we name a Rough Differential
Equation (RDE)

(RDE)

{
dYt = f(Yt)dXt

Y0 = y
(8)

where X ∈ Cα for 1/3 < α ≤ 1/2.

We can express Yt as integral, Yt = y+
∫ t
0
f(Ys)dXs (we always assume f ∈ C∞). Taking a small interval,

we can approximate this integral∫ t

s

f(Yr)dXr = f(Ys)δXs,t +

∫ t

s

[f(Yr) − f(Ys)]dXr

However, this error term is not better than linear for α ≤ 1/2 since f(Yt) ∈ Cα and X ∈ Cα.
Taylor expand f :∫ t

s

f(Yr)dXr = f(Ys)δXs,t +

∫ t

s

∫ r

s

Df(Yq)dYqdXr (9)

= f(Ys)δXs,t +

∫ t

s

∫ r

s

Df(Yq)f(Yq)dXqdXr (10)

= f(Ys)δXs,t +Df(Ys)f(Ys)

∫ t

s

∫ r

s

dXqdXr +

∫ t

s

∫ r

s

[(fDf)(Yq) − (fDf)(Ys)]dXqdXr

(11)

= f(Ys)δXs,t +Df(Ys)f(Ys)

∫ t

s

δXs,rdXr +

∫ t

s

∫ r

s

[(fDf)(Yq) − (fDf)(Ys)]dXqdXr (12)

3
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where the last error term is ≲ |t − s|3α. This gives a new boundary α > 1/3, but lets us address
1/3 < α ≤ 1/2. That is, for α > 1/3, up to o(|t− s|),∫ t

s

f(Yr)dXr = f(Ys)δXs + f(Ys)Df(Ys)Xs,t

where Xs,t =
∫ t
s
δXs,r ⊗ dXr. **Remember these are tensors**

We can define a lift L from X ∈ Cα to (X,X) ∈ C α the rough path space that is

• nonunique

• often requires probability

• universal, i.e. independent of function f or initial condition y

From this lift L we can define a map S : C α → Cα given by (X,X) 7→ Y that is

• unique

• continuous with respect to the right metric (we cannot expect it to be continuous in Cα)

We can repeat this procedure to lower the threshold of viable α regularity, but it becomes more compli-
cated with each new layer as we need to understand what it means to integral X against X in the next step
for example. We will generally take 1/3 < α ≤ 1/2.

2.1 White Noise

Definition 2.1 (White Noise). ξ is random distribution (in the analysis sense) that is a centered Gaussian
such that

E[⟨ξ, ϕ⟩⟨ξ, ψ⟩] =

∫
ϕ(x)ψ(x).

2.1.1 Negative Hölder Continuity

We can’t use the same method to measure regularity as for positive Hölder spaces. |f(x)− f(y)| ≲ |x− y|−α
doesn’t makes sense since as x−y gets small, |x−y|−α blows up. So, we instead measure how the distribution
behave against scaled test functions. Let φλ = λ−dφ(xλ−1). If f is a function,

⟨f, φλ⟩ =
1

λd

∫
f(x)φ(x/λ) dx =

∫
f(λx)φ(x) dx.

For nice functions, this smooths them–for negative regularity, blow up. Thus, if f ∈ C−α, α > 0,

|⟨f, φλ⟩| ≲ λ−α ||f ||−α = sup
φ∈B

sup
0<λ<1

λα|⟨f, φλ⟩|.

So, for white noise,

E[|⟨ξ, φλ⟩|2] =

∫
φλ(x)2 dx =

1

λ2d

∫
φ(x/λ)2 dx =

1

λd
||φ||22.

Thus, ⟨ξ, φλ⟩ ≈ λ−d/2 so regularity of ξ is a bit worse than −d/2, ξ ∈ C−d/2−.

2.1.2 Stochastic PDE examples

1. Stochastic Heat Equation{
∂tu = ∆u+ ξ

u|t=0 = u0
⇒ u(t, x) = Φ ∗ u0 +

∫ t

0

Φt−s ∗ ξ(s, ·) ds

If we take d = 1,
∂tu = ∂2xu+ ξ ⇒ Pu = ξ, P = ∂t − ∆

We think of this instead as a parabolic operator, to get parabolic regularity scale

φλ(t, x) = λ−3φ(λ−2t, λ−1x)

so
|⟨ξ, φλ⟩| ≲ λ−3/2− ⇒ ξ ∈ C−3/2−

p

meaning u ∈ C
1−3/2−
p = C

1/2−
p = C

1/4−
t C

1/2−
x . So,

∫ t
0

Φt−s ∗ ξ(s, ·) ds is a function, but we still need
to think about it in the weak sense.

In general, u ∈ C
( 1

2−
d
4 )−

t C
(1− d

2 )−
x

4
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2. ”Burgers-like equation”

∂tu
i = ∂2xu

i + g(u)∂xu
i + ξi, i = 1, 2, . . . , n (g smooth) (13)

⇒ −
∫
udφ =

∫
u∂2xφ+

∫
g(u)∂xuφ+ ⟨ξ, φ⟩ (14)

Why can’t we define
∫
fdg =

∫
fg′ dt where g′ is the distributional derivative?

We usually need f ∈ C∞
c to do this. However, we can do it if f ∈ Cα and g′ ∈ Cβ−1 so long as

α+ β > 1

Note: C−α = B−α
∞,∞ is a Besov space.

ξi is white noise on R × (0,∞) ∈ C
−3/2−
p = C

−3/4−
t C

−3/2−
x so we expect ui ∈ C

1/2−
p = C

1/4−
t C

1/2−
x .

Note that C
1/2−
x is the same regularity as a BM.

- What about g(u)∂xu
i? In general, we can’t think of g(u)∂xu = ∂x[G(u)]

g : Rn → Rn smooth, then g(u) ∈ C
1/2−
x and ∂xu

i ∈ C
−1/2−
x so we’re just barely out of the regime

where we can do
∫
fg′ via distributions. (!!)

- Idea: cancel out singular part of equation: the white noise ξi.∂tψ
i = ∂xxψ

i + ξi

ψi
∣∣∣∣
t=0

= 0

We want to decompose u into [rough] + [less rough]. Let ui = vi + ψi where

∂tvi = ∂xxv
i + g(v + ψ)∂xv

i + g(v + ψ)∂xψ
i

We think v should be more regular.

Recall:
∫ t
0
frdgr ∈ Cβt where g ∈ Cβt Then, g(v + ψ)∂xψ

i ∈ C
−1/2−
x so we expect v ∈ C

1,1/2−
x . Thus,

g(v + ψ)∂xv
i makes sense as a function.

- Let φ ∈ C∞
c (R) and consider

∫
R g(v + ψ)∂xψφ dx. We can’t do IBP since we will get ∂xψ.∫ y+h

y

g(v + ψ)∂xψφ ≈ g(v(y) + ψ(y))δψy,y+hφ(y) (15)

= G(y, ψ(y))δψy,y+h +

∫ y+h

y

[G(x, ψ(x)) −G(y, ψ(y))] dxψ(x) (16)

= Gδψy,y+h +

∫ y+h

y

[∫ x

y

[(∂xG)(z, ψ(z)) dz +

∫ x

y

∂ψG)(z, ψ(z)) dzψ(z)

]
dxψ(x)]

(17)

= Gδψ +

∫ y+h

y

∫ z

y

∂xG(z, ψ)︸ ︷︷ ︸
bounded

dzdxψ(x)

︸ ︷︷ ︸
≈O(h3/2) acceptable error

+

∫ y+h

y

∫ x

y

∂ψG(z, ψ) dzψ(z)dxψ(x)︸ ︷︷ ︸
≈O(h−1)

(18)

= (∂ψG)(y, ψ(y))

∫ y+h

y

∫ x

y

dzψ(z) dxψ(x) + o(h) (19)

where G(x, ψ(x)) = g(v(x) + ψ(x))φ(x) ∈ C1 So, we need to make sense of

Ψy,y+h =

∫ y+h

y

∫ x

y

dzψ(z) dxψ(x) =

∫ y+h

y

(ψi(t, x) − ψi(t, y)) dxψj(t, x).

2.2 Lift to the space of Rough Paths

Let X : [0, T ] → V = Rm (or any separable Banach space in most cases). We want to define what

Xs,t =

∫ t

s

δXs,r ⊗ dXr

means. We think of Xs,t = I(δ(Xs,·)) where f 7→ Is,t(f) =
∫ t
s
frdXr We require that Is,t satisfy the following:

1. Is,t is linear

2. Is,t(1) = δXs,t

3. If s < t < u, Isu = Ist + Itu. This implies

Xsu = Isu(δXs,·) = Is,t(δ(Xs,·) + Itu(δXs,·)

= Xs,t + Itu(δXs,t + δXt,·)

= Xs,t + Xt,u + δXs,t ⊗ δXt,u (20)

5
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Define X such that Chen’s relation (20) hold. Define

∆n
T = {(s1, . . . , sn) ∈ [0, T ]n : s1 ≤ · · · ≤ sn} ⇒ ∆1

T = [0, T ], ∆2
T ⊂ [0, T ]2 = {s ≤ t}, ∆3

T = {s ≤ t ≤ u}, . . .

So we can think of δ as C(∆1
T )

δ→ C(∆2
T )

δ→ C(∆3
T ) This sequence is short and exact.

δ2 = 0, δAs,t = 0 ⇒ As,t = δFs,t for some F

δ eats functions of (s, t) and spits out functions of (s, t, u). In general, takes n variable functions and returns
n+ 1 variable functions.

X ∈ Cα, 13 < α ≤ 1
2 “Generic” Holder paths should be “self-similar”. Xλt −Xλs ∼ λαδXs,t

Xλs,λt =

∫ λt

λs

(Xr −Xλs) ⊗ dXr ( let r = λq) (21)

= λ

∫ t

s

(Xλq −Xλs) ⊗ dXλq (22)

∼ λ · λα
∫ t

s

(Xq −Xs)dXq since X ∈ Cα (23)

∼ λλαλα−1

∫ t

s

(Xq −Xs)dXq since dX ∈ Cα−1 (24)

= λ2αXs,t (25)

So, we want X to be twice a regular as X.

Definition 2.2. Let 1
3 < α ≤ 1

2 . Then (X,X) is an α-Holder rough path if X : ∆1
T → V and X : ∆2

T → V ⊗V
satisfy

1. Xsu − Xst − Xtu = δXs,t ⊗Xt,u, Chen’s relation

2. [X]α = sup(s,t)∈∆2
T

|Xt−Xs|
|t−s|α <∞ and ||X||C2α = sup(s,t)∈∆2

T

Xs,t

|t−s|2α <∞

This says that Xs,t is small when |t− s| is small.
Note: C2α is used instead of C2α because X is a 2 variable function and C2α sounds like X is C2α in each

variable.

Proposition 2.1. X ∈ C2α(∆2
T )

Proof.
|Xs,t1 − Xs,t2 | = |Xt,t2 + δXs,t1δXs,t2 | ≲ |t1 − t2|2α + C|t1 − t2|α

Similarly for s1, s2

• Example 1 : If X ∈ C1(∆1
T ;V ), and we define Xs,t =

∫ t
s
δXs,rẊ)rdr , then (X,X) ∈ Cα([0, T ];V ) is a

rough path.

• Example 2 : Let X ≡ 0. Let A ∈ V ⊗ V (A ∈ Rm ⊗ Rm) then (0, (t − s)A) ∈ C1/2([0, T ], V ). That
is Xs,t = (t− s)A We’ll see that X corresponds to areas traced out by curves Ex 3: Brownian sample

paths B ∈ Cα ∀ α < 1/2 a.s. Define BIs,t =
∫ t
s
δBr,s ⊗ dBr := lim

|P |→0

∑
i δBti,sδBti,ti+1

this is the Ito

integral. Then (B,BI) ∈ Cα ∀ α < 1/2

Proposition 2.2. There exists a (nonunique) map ϵ : Cα(∆1
T ) → C2α(∆2

T ), X 7→ X such that (X, ϵX) ∈
Cα This is called the Lyons-Victoir Extension

2.3 Topology

We define the following metrix on the space of rough paths, C α,

ρα(X,Y) = [X − Y ]α + ||X− Y||C2α

We want ρα(X,Y) = 0 ⇒ X = Y so enforce X = 0. Then (C α, ρα) is a complete metric space. We define
the ”norm”

|||(X, X)|||Cα = [X]Cα +
√
||X||C2α

Note: the square root is for “homogeneity”.
Note : C α is not a linear space and this “norm” does not satisfy the triangle inequality.
Define δλ : C α → C α, λ > 0 by

(X,X) 7→ (λX, λ2X)

So, |||δλ(X,X)|||Cα = λ|||(X,X)|||Cα

6
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2.3.1 Smooth Approximations

Note : C1 is not dense in Cα, Cα is not separable.

Define the Cα norm by ||X||α = ||X||∞ + [X]α or X0 + [X]α. Then Cα ⊃ Cα0 := C1
Cα

X ∈ Cα0 iff
|Xt−Xs|
|t−s|α → 0 as |t− s| → 0.

Example: Xt = tα ∈ Cα but tα /∈ Cα0 ∀ β > α: Cβ ⊂ Cα0 ⊂ Cα (this inclusion is continuous)
If Xn → X uniformly and [Xn]β ≤ C, then ||Xn −X||α → 0 ∀ α < β

Example: BM ∈ Cα a.s. ∀ α < 1
2 . Thus, BM ∈ Cα0 a.s. ∀ α < 1/2 In fact, B ∈ B1/2

p,∞ ∀ p <∞. (sharp: p
cannot be increased and ∞ cannot be lowered)

Question: Given (X,X) ∈ C α, does there exists Xn ∈ C1([0, T ], V ) such that if Xns,t :=
∫ t
s
δXn

s,r ⊗ dXn
r ,

then ρα((Xn,Xn), (X,X)) → 0? Or if not, do we at least have

||Xn −X||∞ + ||Xn − X||∞ → 0

and supn |||(X,X)|||Cα <∞?
Answer : In general, no.
Let X smooth.

Xi,js,t =

∫ t

s

(Xi
r −Xi

s)dX
j
r = (Xi

t −Xi
s)(X

j
t −Xj

s ) −
∫ t

s

(Xj
r −Xj

s )dXi
r︸ ︷︷ ︸

Xj,i
s,t

Thus, Sym(Xs,t) = 1
2δXs,t ⊗ δXs,t

Recall, A = A+AT

2 + A−AT

2 decomposition into symmetric and antisymmetric components.
Antisymmetric component has something to do with the area, think A = 1

2

∫
xdy − ydx

Definition 2.3. 1
3 < α ≤ 1

2 , (X,X) ∈ C α is a geometric α−Holder Rough Path if Sym(Xs,t) = 1
2δXs,t⊗δXs,t

holds. We say (X,X) ∈ C α
g .

That is Sym(Xs,t) is determined by X. However, antisymmetric part has freedom.

Example 2.1. (Geometric rough path as limits of smooth approximations)

Xn
t = αn−1/2(cos(2πnt), sin(2πnt)), Xns,t =

∫ t
s
(Xn

r −Xn
s ) ⊗Xn

r dr. Then

(Xn,Xn)
uniformly→

(
0,
α2

2

[
0 1
−1 0

]
(t− s)

)
∈ C 1/2

g

Let X = (X,X). Since our goal is dY = f(Y )dX, consider Ẏ n = f(Y n)Ẋn. Then if Xn → X. Then
Y n → Y where dY = f(Y )dX.

Example 2.2. Let f : R → R2, x 7→ (f1(x), f2(x)).

Yt − Ys = f1(Ys) · δX1
s,t + f2(Ys) · δX2

s,t + tr

[(
f1f

′
1 f2f

′
1

f1f
′
2 f2f

′
2

)
(Ys)Xs,t

]
+ o(t− s)

Increments of the base path are zero (?)

Yt − Ys =
α2

2
{f1, f2}(Ys)

where {f1, f2} = f1f
′
2−f2f ′1 is the Poisson bracket. We can choose paths Xn that go to zero but their effects

do not go to zero. If flows f1, f2 do not commute, then effects are nontrivial

2.4 Brownian motion as a rough path

Loosely, E[(Bt −Bs)
2] = m(t− s) → E

[(
Bt−Bs

|t−s|1/2

)2]
= m, so ∼ 1/2 Hölder regular.

In general, E
[(

Bt−Bs

|t−s|1/2

)p]
= Cp.

[B]Wα,p =

∫
[0,T ]2

∫ [
|Bt −Bs|
|t− s|α

]p
dsdt

|t− s|
→ E[[B]Wα,p ] =

∫ ∫
E[|Bt −Bs|p]

|t− s|αp
dsdt

|t− s|

=

∫ ∫
Cp|t− s|p/2

|t− s|αp+1
dtds = Cp

∫ ∫
|t− s|p(

1
2−α)−1dtds

p
(
1
2 − α

)
− 1 > −1 → α < 1/2. Thus, [B]Wα,p < ∞ (α < 1/2, p < ∞). Wα,p ⊂ Cα−

1
p (α > 1/p for large

enough p). So if β < 1/2, choose p such that α = β + 1
p < 1/2 so B ∈Wα,p ⊂ Cβ .

2.5

We want to move from norm defined by integrals to norm defined by sup.

Theorem 2.1. (Kolmogorov Continuity Criterion) Let (Ω,F ,P) be a probabilituy space and (E, d) a com-
plete metric space. Let X : Ω → C([0, 1], E) be measurable and satisfy, for some C > 0, p > 1, β ∈ (0, 1),

β > 1/p. E[d(Xs, Xt)
p] ≤ Cp|t− s|βp ∀ t, s ∈ [0, 1]

(
sups,t∈[0,1]

∣∣∣∣∣∣d(Xs,Xt)
(t−s)p

∣∣∣∣∣∣
Lp(Ω)

≤ C

)
.

Then ∀ α < β − 1
p , E

[(
sups,t∈[0,1]

d(Xs,dXt)
|t−s|α

)p]1/p
≤MC where M = M(α, β, p).

7
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Proof. Note that by continuity, it is sufficient to consider only dyadic t, s. DefineKn = maxk=0,...,2n−1 d(Xk/2n , Xk+1/2n),

||Kn||pp ≤
2n−1∑
k=0

E[d(Xk/2n , Xk+1/2n)p] ≤ 2nCp2−nβp = Cp2−nβp−1. Let Dn =
(
k
2n

)2n
k=0

and D =
⋃
Dn.

If we fix s, t ∈ D, they are not necessarily adjacent dyadics, so we need to be careful.
Fix s, t ∈ D and choose m ∈ N such that 2−m−1 < t − s ≤ 2−m and get the dyadic expansion of t and

s. We can write s = k
2m +

M∑
n=m+1

δn
2n , δn ∈ {0, 1} and t = k+2

2m −
M∑

n=m+1

ϵn
2n , ϵn ∈ {0, 1} and M is such that

s, t ∈ DM .
Then

d(Xs, Xt)

|t− s|α
≤ 2(m+1)α

(
d(Xk/2m , Xk+2/2m) + 2

∞∑
n=m+1

Kn

)
≤ 2(m+1)α · 2

∞∑
n=m

Kn

Jm = sup
s,t∈D:2−m−1<|t−s|≤2−m

d(Xs, Xt)

|t− s|α
≤ 2(m+1)α · 2

∞∑
n=m

Kn

||Jm||Lp ≤ 2mα2(1+α)
∞∑
n=m

C2−m(β−1/p) ≤ 21+α

1 − 2−(β−1/p)
C2−m(β−1/p−α) (summable)

Add up all scales to get all s, t ∈ D, so ||[X]α||Lp = || supm Jm||Lp ≤
∞∑
m=0

||Jm||Lp ≤MC

2.6 Tensor Algebra

T (V ) = R⊕ V ⊕ V ⊗ V ⊕ V ⊗3 ⊕ · · · =
⊕∞

n=0 V
⊗n.

Truncated: T (2)(V ) = R⊕V ⊕V ⊗V . That is, if (a+V +A)⊗(b+w+B) = ab+(av+bw)+(v⊗w+aB+bA),
i.e. the three tensor vanishes.

T
(2)
1 = {1 + v +A} is a group. (1 + v +A)−1 = 1 − v −A+ v ⊗ v

Let X = (X,X) ∈ C α, then Xt = 1 +X0,t + X0,t ∈ T
(2)
1 path living in tensor algebra.

Chen’s relations become Xt ⊗ (Xs)
−1 = 1 + δXs,t + Xs,t

Suppose X : [0, T ] → V, X : ∆2
T → V ⊗V satisfies Chen’s relations. Define Xs,t = 1 + δXs,t+Xs,t. Then

if s < t < u,

Xs,t ⊗Xt,u = 1 + δXs,t + δXt,u + Xs,t + Xt,u + δXst ⊗ δXtu

= 1 + δXs,u + Xs,u (By Chen’s relations)

= Xs,u

Then taking Xt = X0,t, X0,s ⊗Xs,t = X0,t → Xs,t = X−1
s ⊗Xt.

We want a norm on this group. Define N(X) = max{|v|,
√

2|A|}.

Lemma 2.1. (N is additive)

Proof.

N(X ⊗ Y ) = max{|v + w|,
√

2|A+B + v ⊗ w|}.
|v + w| ≤ |v| + |w| ≤ N(X) +N(Y )√

2|A+B + v ⊗ w| ≤
√

2|A| + 2|B| + 2|v||w| ≤
√
N(X)2 +N(Y )2 +N(X)N(Y )

=
√

(N(X) +N(Y ))2 = N(X) +N(Y )

Define d(X,Y ) = 1
2

[
N(X−1 ⊗ Y ) +N(Y −1 ⊗X)

]
(now also symmetric) and (T

(2)
1 (V ), d) is a complete

metric space.

Theorem 2.2. (X,X) ∈ C α([0, T ], V ) ⇔ Xs,t = 1 + δXs,t + Xs,t ∈ T
(2)
1 (V ) satisfies,

1. Xsu = Xst ⊗Xtu ∀ s < t < u

2. (X0,t)t∈[0,T ] ∈ Cα([0, T ], (T
(2)
1 (V ), d)

Let B be Brownian motion. Then E[|Bt−Bs|p] = Cp|t− s|p/2 ∀ p ≥ 1 → KCC B ∈ Cα ∀ α < 1/2− 1/p.
We now write our motivating RDE as follows

dY = f(Y )dX

where X = (X,X) ∈ C α.
We consider the example of the Brownian motion. We have previously show that B ∈ C α ∀ α < 1/2.

Heuristically, the lift we define

Bi,js,t =

∫ t

s

(Bir −Bis)dB
j
r

Then, we must consider 2 cases:

8
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(i) i = j That is, we would like to understand the iterated integral of the form∫ t

s

BrdBr = lim
|P |→0

N−1∑
i=0

Bti(Bti+1 −Bti) = lim
|P |→0

IP

We would like the analogue of xdx understood as d
(
x2

2

)
. Then

IP =

N∑
i=0

[
B2
ti+1

2
−
B2
ti

2
− 1

2
|Bti+1 −Bti |2

]
=
B2
t −B2

s

2
− 1

2

N−1∑
i=0

(Bti+1 −Bti)
2

Define QP =
N−1∑
i=0

(Bti+1
−Bti)

2.

Lemma 2.2. QP
L2(Ω)→ t− s as |P | → 0.

Proof.

QP − (t− s) =

N−1∑
i=0

[
(Bti+1 −Bti)

2 − (ti+1 − ti)
]

=

N−1∑
i=0

Mti,ti+1

⇒ E[Ms,t] = 0 (by properties of BM)

E[M2
s,t] = C(t− s)2 (Young’s)

E[|QP − (t− s)|2] =

N−1∑
i=0

E[(Mti+1,ti)
2] (off-diagonal terms vanish since Mti,ti+1 independent)

= C

N−1∑
i=0

(ti+1 − ti)
2 ≤ C(t− s)|P | → 0.

So, ∫ t

s

(Br −Bs)dBr =

∫ t

s

BrdBr −Bs(Bt −Bs)

=
B2
t

2
− B2

s

2
− 1

2
(t− s) −BsBt +B2

s

=
(Bt −Bs)

2

2
− t− s

2
.

(ii) i ̸= j Let X,Y independent BM. Then we want to understand the iterated integral
∫ t
s
XrdYr. First

let’s consider ξ(f) =
∫∞
0
frdYr for some deterministic path, f : [0,∞) → R.

First, consider a step function fr =
M∑
i=1

ai1[si,ti] where s1 < t1 < s2 < t2 < . . . . Then

ξ(f) =

M∑
i=1

a2i (Yti − Ysi) ∼ N (0, ||f ||2L2)

since

E[ξ(f)2] =

M∑
i=1

a2iE[(Yti − Ysi)
2] =

M∑
i=1

a2i (ti − si) =

∫ ∞

0

f2r dr = ||f ||2L2

Note: ξ extends as an isometry from  L2((0,∞)) to L2(Ω).

Considering our original integral,
∫ t
s
XrdYr since X,Y are independent, changes in X do not change

the behavior of Y . Let’s look at (Ω,P(·|FX)) so we treat X as “deterministic” or information that we
already know and take ξX : L2((0,∞)) → L2(Ω). We can think of Ω = ΩX×ΩY andX(ω1, ω2) = X(ω1)
and Y (ω1, ω2) = Y (ω2). Then∫ t

s

XrdYr = ξX(1[s,t]X(ω1))(ω2) ∼ N
(

0,

∫ t

s

|Xr(ω1)|2dr
)

In particular,

E

[∣∣∣∣∫ t

s

Xr −Xs dYr

∣∣∣∣p ∣∣∣∣FX
]

= CpE
[∫ t

s

|Xr −Xs|2 dr
]p/2

≤ CpE
[∫ t

s

|Xr −Xs|p dr (t− s)p/2−1

]
= C ′

p

∫ t

s

(r − s)p/2dr (t− s)p/2−1 = C ′
p(t− s)p

9
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For Brownian motion, we say that we have moments of all orders and

E[|Bs,t|p] ≤ cp|t− s|p/2 ∀ 0 ≤ s ≤ t ≤ T

so,
E[d(Bs,Bt)

p] ≤ Cp|t− s|p/2 ∀ 0 ≤ s ≤ t ≤ T.

So, by Kolmogorov Continuity Criterion, ∀ α < 1/2, B ∈ Cα([0, T ], T
(2)
1 (Rm)) ⇔ (B,B) ∈ C α([0, T ]).

Choose α < 1/2 and then choose p large enough such that α+ 1
p <

1
2 .

Note: B is not a geometric rough path, we cannot take smooth approximations and expect to converge.

Example 2.3. Let m = 1, 1
3 < α ≤ 1

2 , X ∈ Cα. Define Xs,t = 1
2 (Xt − Xs)

2 (in this case this is the
only way to lift to a geometric rough path). Consider our RDE, dY = f(Y )dX and we want to know that

Yt − Ys =
∫ t
s
f(Yr)dXr means.

Ys − Yt ≈ f(Ys)(Xt −Xs) + [(f · ∇)f ](Ys) : Xs,t + o(|t− s|) = As,t + o(|t− s|)

3 Rough Integration

The Sewing Lemma is how we make this new theory of integration rigorous. It is as follows:

Lemma 3.1. (Sewing Integration Lemma) Fix 0 < α ≤ 1 < γ. Then ∃ linear maps I : C(∆2
T ) → C(∆1

T )
and R : C(∆2

T ) → C(∆2
T ) such that A ∈ C(∆2

T ). (Let It = I(A)t and Rs,t = R(S)s,t)

1. I0 = 0 and δIs,t = As,t +Rs,t (Therefore, we need only construct I or R)

2.

sup
(s,t)∈∆2

T

|Rs,t|
|t− s|γ

≲γ sup
(s,t,u)∈∆3

T

|δAs,t,u|
|u− s|γ

3.

sup
(s,t)∈∆2

T

|δIs,t|
|t− s|α

≲α,γ sup
(s,t)∈∆2

T

|As,t|
|t− s|α

+ T γ−α sup
(s,t,u)∈∆3

T

|δAs,t,u|
|u− s|γ

Remark 3.1. • δAs,t,u = “how not additive A is” ∴ the remainder is determined by how not additive
A is. In fact taking δ of both sides of (i), we get 0 = δA+ δR→ δR = −δA

•

δIs,t =

∫ t

s

Ar,r+dr = lim
|P |→0

∑
[u,v]∈P

Au,v

δIs,t =
∑

[u,v]∈P

δIu,v =
∑
[u,v]

Au,v︸ ︷︷ ︸
converges to something

+
∑
[u,v]

Ru,v︸ ︷︷ ︸
converges to 0

Example 3.1. f ∈ Cα, g ∈ Cβ , s < t < u, As,t = fsδgs,t.

δAs,t,u = fs(gu − gs) − fs(gt − gs) − ft(gu − gt)

= fs(gu − gs − gt + gs) − ft(gu − gt)

= (gu − gt)(fs − ft) = −δfs,tδgt,u
|δAs,t,u| ≲ [f ]α[g]β |u− s|α+β

Can take γ = α+ β for α+ β > 1 → criterion for Young’s integration.

Lemma 3.2. Assume γ > 1, A : ∆2
T →W , [δA]γ = sup

s<t<u

|δAs,t,u|
|u−s|γ <∞ where δAs,t,u = As,u −As,t −At,u.

Define I(A)s,t =
∑

[u,v]∈P
Au,v where P partition of [s, t]. Then

M(A) = sup
P

|As,t − IP (A)s,t| ≲γ [δA]γ |t− s|γ

Proof. Let P be a partition of [s, t] and let #P = number of subintervals in P . ∃v ∈ P\{s, t} s.t. if
v− < v < v+ are adjacent points in P , then |v+ − v−| ≤ C|t− s|. If not, then

2|t− s| ≥
∑

v∈P\{s,t}

|v+ − v−| > C|t− s| · (#P − 1)︸ ︷︷ ︸
# of points in P\{s, t}

which yields a contradiction if C = 2
#P−1 .

Let P̃ = P\{v}. Then

|IP̃ (A)s,t − I(A)s,t| = |Av−,v+ −Av−,v −Av,v+ | = |δAv−,v,v+ | ≤ [δA]γ |v+ − v−|γ ≤ 2γ

(#P − 1)γ
[δA]γ |t− s|γ .

Proceeding inductively until reach trivial partition.

|As,t − IP (A)s,t| ≤ 2γ [δA]γ |t− s|γ
#P−1∑
k=1

1

kγ
= 2γζ(γ)[δA]γ |t− s|γ

10
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Proof of Sewing Lemma

Proof. Let P and P̃ be two partitions of [s, t]. Assume WLOG that P ⊂ P̃ . Then

|IP (A)st − IP̃ (A)st| =
∑

[u,v]∈P

|Auv − IP (A)uv| ≤
∑

[u,v]∈P

M(A)uv ≲γ [δA]γ
∑

[u,v]∈P

|v − u|γ ≤ [δA]γ |P |γ−1|t− s|

so sequence {IP } is Cauchy. Thus, ∃ a limit lim
|P |→0

IP (A)st = I(A)st.

Taking |P̃ | → 0,
|IP (A)st − I(A)st| ≲γ [δA]γ |t− s||P |γ−1

Taking the coarsest partition P̊ = {s, t},

|Ast − I(A)st| ≲γ [δA]γ |t− s|γ

That is δI(A) = 0 so if R(A)st = I(A)st −Ast ⇒ δR(A)st = −δAst.
So, we get [R(A)]γ ≲γ [δA]γ
Claim: If s < t < u, then I(A)su − I(A)st + I(A)tu (δI(A)stu = 0).
Let P be a partition of [s, u] where t ∈ P as an interior point. Then P = P1 ∪P2 where P1 is a partition

of [s, t] and P2 is a partition of [t, u]. Then

I(A)su = IP1
(A)st + IP2

(A)tu

Then |P1|, |P2| → 0 ⇔ |P | → 0, so I(A)t := I(A)0,t ⇒ I(A)s,t = δI(A)st
[Note: Heuristically, I(A)t =

∫ t
0
Ar,r+dr and δI(A)st =

∫ t
s
Ar,r+dr]

Regularity of I(A)t. We have that δI(A)st = Ast + R(A)st. Then

|δI(A)st|
|t− s|α|

≤ |Ast|
|t− s|α

+
|R(A)st|
|t− s|γ

|t− s|γ − α

≤ [A]α + T γ−α[R(A)])γ

≲γ [A]α + T γ−α[δA]γ

Example 3.2.

Ast = f ⊗ δgst

⇒ δAstu = −δfst ⊗ δgtu

R(A)st =

∫ t

s

frδgr − fsδgst =

∫ t

s

[fr − fs] ⊗ δgr

∴ δR = −δA = δfst ⊗ δgtu

Example 3.3. (X,X) ∈ C α, 1
3 < α ≤ 1

2 , f smooth.∫ t

s

f(Xr)dXr = f(Xs)δXst +

∫ t

s

[f(Xr) − f(Xs)]dXr

= f(Xs)δXst +Df(Xs)

∫ t

s

(Xr −Xs) ⊗ dXr︸ ︷︷ ︸
Xst︸ ︷︷ ︸

Ast

+R

Ast = f(Xs)δXst + Df(Xs) : Xs,t︸ ︷︷ ︸
contraction of tensors: multiply and take trace

X = (X,X) ∈ C α([0, T ], V ), 1
3 < α ≤ 1

2 , f : V → V at least C1,1. We want to makes sense of∫ t
s
f(Xr)dXr ≈ f i(Xs)δX

i
s,t +Dxif

j(Xs) : Xi,js,t = As,t.
[Note: This is not quite the same integral from the RDE dYr = f(Yr)dXr]

As,t,u = Asu −Ast −Atu

= −[f(Xt) − f(Xs)] · δXs,t +Df(Xs) : Xs,u −Df(Xs) : Xs,t −Df(Xt) : Xt,u
= −[f(Xt) − f(Xs)︸ ︷︷ ︸

like δXs,t

] · δXs,t +Df(Xs) : [Xtu + δXst ⊗ δXtu︸ ︷︷ ︸
from Chen’s relations

] −Df(Xt) : Xt,u

= −[f(Xt) − f(Xs) −Df(Xs) · δXs,t] · δXt,u − [Df(Xt) −Df(Xs)] : Xt,u
≲ ||∇2f ||∞([X]3α + [X]α[X]2α)|u− s|3α

Thus, we can apply the sewing lemma since 3α > 1. So,∫ t

s

f(Xr)dXr = lim
|P |→0

∑
[u,v]∈P

[f(Xu)δXu,v +Df(Xu) : Xu,v]

11
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exists and ∣∣∣∫ ts f(Xr)dXr

∣∣∣
|t− s|α

≲ ||f ||∞[X]α + Tα||Df ||∞[X]2α

and ∣∣∣∣∫ t

s

f(Xr)dXr − f(Xs)δXs,t −Df(Xs) : Xs,t
∣∣∣∣ ≲ |t− s|3α

Can we say anything about the continuity of the map X 7→
∫ ·
0
f(Xr)dXr? (Stability)

Instead of directly comparing integrals, since C α is not a linear space, we compare germs A1 and A2

which give us estimates on integrals. Let As,t = A1
s,t −A2

s,t. Then

|δAs,t,u|
|u− s|3α

≲ [X1 −X2]α + [X1 − X2]2α︸ ︷︷ ︸
rough path metric

∀ X1,X2 such that |||X1||| + |||X2||| < R

That is, locally Lipschitz with respect to this metric.
dYr = f(Yr)dXr → “increments of Y up to some multiplicative factor like increments of X”

Definition 3.1. Fix X = (X,X) ∈ C α([0, T ], V ). (Y, Y ′) ∈ Dα
X([0, T ],W ) is called an X−controlled rough

path if Y ∈ Cα([0, T ],W ), Y ′ ∈ Cα([0, T ],W ⊗ V ), and RYs,t := δYs,t − Y ′
sδXs,t satisfied supt,s

|RY
s,t|

|t−s|2α <∞.

That is δYs,t = Y ′
sδXs,t +RYs,t.

Example 3.4. Yt = f(Xt), f smooth.

Yt − Ys = f(Xt) − f(Xs) = Df(Xs)δXs,t +RYs,t

where RYs,t ≲ |t− s|2α so (f(X), Df(X)) ∈ Dα
X.

For fixed X, Dα
X is a linear space and a Banach space with

||(Y, Y ′)||α = |Y0| + |Y ′
0 | + [(Y, Y ′)]α

where
[(Y, Y ′)]α = [Y ]α + [RY ]2α

[Note:
[Y ]α ≤ ||Y ′||∞[X]α + [RY ]2αT

α ≤ (|Y ′
0 | + [Y ′

0 ]αT
α)[X]α + [RY ]2αT

]
C α ⋉ Dα = {(X, Y ) : X ∈ C α, Y ∈ Dα

X}
We can define a kind of “metric”. Given (Y, Y ′) ∈ Dα

X and (Ỹ , Ỹ ′) ∈ Dα
X̃

define

d((Y, Y ′), (Ỹ , Ỹ ′)) = [Y ′ − Ỹ ′]α + [RY −RỸ ]2α + |Y0Ỹ0| + |Y ′
0 − Ỹ ′

0 |

[Note: d((Y, Y ′), (Ỹ , Ỹ ′) = 0 does not imply that (Y, Y ′) and (Ỹ , Ỹ ′) are not the same objects since they live
in different spaces.]

We are concerned with the integration of Y ∈ Dα
X against X ∈ C α.∫ t

s

YrdXr ≈ YsδXst +

∫ t

s

(Yr − Ys)dXr

= YsδXs,t + Y ′
s

∫ t

s

δXsrdXr︸ ︷︷ ︸
Xs,t

Theorem 3.1. ∫ t

s

YrdXr = lim
|P |→0

∑
[u,v]∈P

[YuδXuv + Y ′
uXuv]

and if Zt =
∫ t
0
YrdXr and Z ′

t = Yt then (Z,Z ′) ∈ Dα
X([0, T ],W ⊗ V ) with estimates.

Proof. Define As,t = YsδXs,t + Y ′
sXs,t. Then to apply sewing lemma, we need to

|As,t| ≤ (||Y ||∞[X]α + ||Y ′||∞[X]2αT
α)|t− s|α

δAstu = YsδXsu − YsδXst − YtδXtu + Y ′
sXsu − Y ′

sXst − Y ′
tXtu

= −Ys(δXsu − δXst) − Yt(δXtu) + Y ′
s ( Xsu − Xst︸ ︷︷ ︸

Xtu+δXst⊗δXtu

) − Y ′
tXtu

= −δYstδXtu = δY ′
stXtu| + Y ′

s (δXst ⊗ δXtu)

= −(δYst − Y ′
sδXst︸ ︷︷ ︸

RY
st

)δXtu − (Y ′
t − Y ′

s )Xtu

= −RYstδXtu − δY ′
stXtu

12
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So,
[δA]3α ≤ [RY ]2α[X]α + [Y ′][X]2α

3α > 1 so we can apply the sewing lemma. That is I(A)st =
∫ t
s
YrdXr exists,

R(A)st = I(A)st −Ast =

∫ t

s

YrdXr − YsδXst − Y ′Xst

[R(A)]3α ≲ [δA]3α,

1

|t− s|3α

∣∣∣∣∣∣∣∣∣
∫ t

s

∫ t

s

YrdXr︸ ︷︷ ︸
Zt−Zs

−YsδXst − Y ′
sXst

∣∣∣∣∣∣∣∣∣ ≲α ([X]α + [X]2α)([(Y, Y ′)]α)

δZst = YsδXst +

|t−s|2α︷ ︸︸ ︷
Y ′
sXst +

|t−s|3α︷ ︸︸ ︷
R(A)st︸ ︷︷ ︸

RZ
st

so we get a higher order estimation/expansion + remainder that is more

regular. This makes sense intuitively that as you integrate you should gain regularity. [Z ′]α = [Y ]α and
[RZ ]2α ≤ ||Y ′||∞[X]2α + ([X]α + [X]2α)[(Y, Y ′)]αT

α,

[(Z,Z ′)] ≲α,T (|Y ′
0 | + [(Y, Y ′)])([X]α + [X]2α)

(X,X) ∈ C α([0, T ], V ), (Y, Y ′) ∈ Dα
X.

δZst =

∫ t

s

Yr dXr = lim
|P |→0

∑
[u,v]∈P

[YuδXu,v + Y ′
uXuv]

so, (Z,Z ′) ∈ Dα
X, Z ′ = Y .

Remark 3.2. 1. We took Y ∈ W → Z ∈ W ⊗ V = L (V,W ) “linear maps from V to W”, then
Z ′ ∈ (W ⊗ V ) ⊗ V . So how is Z ′ = Y ? There exists a canonical inclusion W ↪→ (W ⊗ V ) ⊗ V where
w 7→ i(w)[v] = w⊗ v. We could also take Y ∈ W̃ ⊗ V , Y ′ ∈ (W̃ ⊗ V )⊗ V ⇒ Z ∈ W̃ , Z ′ = Y ∈ W̃ ⊗ V
and don’t have to think about inclusion.

2. Recall if (X,X), (X, X̃) ∈ C α([0, T ], V ), then X̃ = X + δF for some F ∈ C2α([0, T ], V ⊗ V ) by Chen’s
relations.

If (Y, Y ′) ∈ Dα
X ⇔ (Y, Y ′) ∈ Dα

X̃
because they have the same base path. So, we could integrate against

X or X̃, but the integrals will be different.∫ t

s

YrdX̃r = lim
|P |→0

∑
[u,v]∈P

[YuδXuv + YuX̃uv]

= lim
|P |→0

∑
[u,v]∈P

[YuδXuv + Y ′
uXuv + Y ′

uδFuv]

=

∫ t

s

YrdXr +

∫ t

s

Y ′
rdFr︸ ︷︷ ︸

correction term

[Note:
∫
Y ′dF makes sense since Y ′ ∈ Cα and F ∈ C2α, so we can apply the sewing lemma.]

3.1 Stability Estimates for Rough Integration

(X,X), (X̃, X̃) ∈ C α, (Y, Y ′) ∈ Dα
X, (Ỹ , Ỹ

′) ∈ Dα
X̃

. Then Z =
∫
Y dX and Z̃ =

∫
Ỹ dX̃. We’d like to estimate

a kind of “distance” between Z and Z̃.

[(Z,Z ′), (Z̃, Z̃ ′)]α := [Z ′ − Z̃ ′]α + [RZ −RZ̃ ]2α

[Note: even if X = X̃, Z̃ = Z + c1 + c2X so Z̃ ′ = Z ′ + c2, then [Z ′ − Z̃ ′]α = 0 and δZ̃st = δZst + c2δXst =

(Z ′
s + c2)δXst +RZst, so [RZ −RZ̃ ]2α = 0. The pseudonorm will measure distance of 0, i.e. will not separate]

Theorem 3.2. If M > 0 and [X]α, [X]2α, [X̃]α, [X̃]2α, [(Y, Y
′)]α, [(Ỹ , Ỹ

′)]α, |Y0|, |Y ′
0 | ≤M . Then

[(Z,Z ′), (Z̃, Z̃ ′)]α ≲M ρα(X, X̃) + |Y ′
0 − Ỹ0

′| + [(Y, Y ′), (Ỹ , Ỹ ′)]Tα

and
[Z − Z̃]α ≲M |Y0 − Ỹ0| + ρα(X, X̃) + |Y ′

0 − Ỹ0
′| + [(Y, Y ′), (Ỹ , Ỹ ′)]Tα

13
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Proof. Z ′ = Y , Z̃ ′ = Ỹ

[Z ′ − Z̃ ′]α = [Y − Ỹ ]α

≤ ||Y ′ − Ỹ ′||∞[X]α + ||Ỹ ′||∞[X − X̃]α + [RY −RỸ ]α︸ ︷︷ ︸
≤[RY −RỸ ]2αTα

≲M |Y ′
0 − Ỹ ′

0 | + [Y ′ − Ỹ ′]αT
α + ρα(X, X̃) + [RY −RỸ ]2αT

α

= |Y ′
0 − Ỹ ′

0 | + [(Y, Y ′), (Ỹ , Ỹ ′)]Tα + ρα(X, X̃)

δZst = YsδXst + Y ′
sXst + R(A)st

δZ̃st = ỸsδX̃st + ỸsX̃st + R(Ã)st

The difference of the first two terms will be as above,

[RZ −RZ̃ ]2α ≲M ||Y ′ − Ỹ ′||∞ + [X− X̃]2α + [R(A− Ã)]2α︸ ︷︷ ︸
≤Tα[R(A−Ã)]3α≲Tα[δA−δÃ]3α

δAstu = −RYstδXtu − δY ′
stXtu

δÃstu = −RỸstδX̃tu − δỸ ′
stX̃tu

Taking the difference and proceeding as above.

3.2 Existence and uniqueness

dYt = f(Yt)dXt, Y0 = y ∈W, X ∈ C α([0, T ], V ), f : W →W ⊗ V

δYst =
∫ t
s
f(Yr)dXr where f(Y ) needs to be a controlled rough path for us to make sense of integration

If (Y, Y ′) ∈ Dα
X([0, T ],W ), then

f(Yt)−f(Ys) = Df(Ys)δYst+

∫ t

0

Df(τYt + (1 − τ)Ys) −Df(Ys)dτδYst︸ ︷︷ ︸
Rfy

st

= Df(Ys)Y
′
sδXst+Df(Ys)R

Y
st+R

fy
st

|Rfyst | ≤ ||Df ||∞|δYst|2 ⇒ (f(Y ), f(Y )′) ∈ Dα
X([0, T ],W ⊗ V ) where f(Y )′ = Df(Y )Y ′. Note: we need

Y ′ ∈ Cα since Df(Y ) ∈ Cα since Df is Lipschitz.

We say (Y, Y ′) ∈ Dα
X solves RDE if Y0 = y and δYst =

∫ t
s
f(Yr)dXr ∀ s, t. (Y, Y ′) solves RDE ⇒ Y ′ =

f(Y ) (looks like an ODE expect prime is with respect to X)
Can we prove existence and uniqueness?

Theorem 3.3. If f ∈ C2
b , then ∃ a solution. If f ∈ C3

b , then the solution is unique.

We want apriori estimates for [Y ]α (in terms of X):

δYst = f(Ys)δXst +RYst

= f(Ys)δXst + f(Ys)
′Xst + R(A)st

Note also,

Ast = f(Ys)δXst + f(Ys)
′Xst

= −Rf(Y )
st δXtu − δf(Y )stXtu

Goal: Choose h and estimate [RY ]2α,h = sup
{

|RY
st|

|t−s|2α : |t− s| ≤ h
}

RYst = f(Ys)
′Xst + R(A)st

[RY ]2α,h ≲ ||Y ′||∞[X]2α + [R(A)]3α,hh
α

≲ [X]2α + [δA]3α,hh
α

≲ [X]2α + ([Rf(Y )]2α,h[X]α + [f(Y )′]α,h[X]2α)hα

≤ |t− s|2α([Y ]2α,h + [RY ]2α,h)

Take hα|||X||| < 1/2.

[RY ]2α,h ≤ 1

2
[RY ]2α,h + C(||X||2α +

1

2
[Y ]2α,h) + ||X||1/22α [Y ]α,h ≲ [X]2α + [Y ]2α,h

Since δYst = F (Ys)δXst +RYst, then we can close the loop.

|δYst| ≲ ([X]α + hα[RY ]2α,h)|t− s|α

hα[Y ]α,h ≤ hα[X]α + h2α([X]2α + [Y ]2α,h)

14
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Note: Suppose Nh < |t− s| < (N + 1)h. Then

|δYst|
|t− s|α

≤ (N + 1)[Y ]α,hh
α

(Nh)α
≲ N1−α[Y ]α,h

so [Y ]α;[0,T ] ≲
T 1−α

h1−α [Y ]α,h;[0,T ]

We required that hα|||X|||α ≲ 1 ⇒ [Y ]α,h ≲ [Y ]2α,hh
α + |||X|||α We want to specify h is a clever way so

we can estimate in terms of X since we are trying to bound [Y ]α
Multiplying by hα and by C

⇒hα[Y ]α,h ≤ C(hα[Y ]α,h)2 + Chα|||X|||α
⇒Chα[Y ]α,h︸ ︷︷ ︸

ψh

≤ (Chα[Y ]α,h)2 + C2hα|||X|||α︸ ︷︷ ︸
λh

⇒ψh ≤ ψ2
h + λh

When h→ 0, ψh gets small and can absorb ψ2
h. We also know that λh → 0.

We take λh ≤ 1/4 since ψh ≤ 1
2 (2ψ2

h + 1/2) = ψ2
h + 1/4 to give actual conditions on ψh. So, ψ± =

1
2 ±

√
1
4 − λh then either ψh ≥ ψ+ > 1/2 or ψh ≤ ψ− ≤ 2λh We want to specify λh so such a jump cannot

occur before λh.
Take h0 such that λh0

< 1
100 . Claim: ϕh ≤ ψ− ∀ h ≤ h0.

If λh ≤ 1
100 , ψ− ≤ 1

50 . We actually claim ψh ≤ 2 lim
δ→0

ψh−δ which would rule a jump by a factor of 25.

hα
|Yt − Ys|
|t− s|α

≤ hα
[

|Yt − Ys|
2α|t−m|α

+
|Ym − Ys|

2α|s−m|α

]
≤
(
h

2

)α
2[Y ]α,h/2 ⇒ hα[Y ]α,h ≤ 2

(
h

2

)α
[Y ]α,h/2

ψh ≤ 2ψh/2 ≤ 2 lim
δ→0

ψh−δ since ψ is increasing.

So, [Y ]α,h ≲ |||X|||α. If

hα|||X|||α = c⇒ [Y ]α;[0,T ] ≲T
1

h1−α
[Y ]α,h;[0,T ] ≲

1

h1−α
|||X|||α

Then, we get existence for RDE for f ∈ C1,1 by Euler scheme.
Uniqueness: Zt = y +

∫ t
0
f(Ys)dXs solution to RDE ⇔ (Y, Y ′)

m7→ (Z, f(Y ))
proof (sketch): Set up fixed point problem. First, take α′ such that 1/3 < α′ < α ≤ 1/2. Look for fixed

point of m on Dα
X. (Note if X ∈ C α, then X ∈ C α′

) Then, we can show that (Y, Y ′) ∈ Dα
X.

|δYst|
|t− s|α

= |f(Ys)|
|δXst|
|t− s|α

+
|RYst|

|t− s|2α′ |t− s|2α
′−α

where 1/2α < α′ < α. Next, BT = {(Y, Y ′) ∈ Dα′

X : Y0 = y, Y ′
0 = f(y), [(Y, Y ′)]α ≤ 1} Need to if T is

sufficiently small that m : BT → BT and m is a contraction mapping.

3.3 Itô v.s. Stratonovich integrals
1
3 < α ≤ 1

2 , X ∈ C α, f ∈ C2,δ
b , δ > 1−2α

α , dY = f(Y )dX ⇒ ∃! solution (Y, f(Y )) ∈ Dα
X. Also, stability:

X, X̃, y, ỹ ⇒ (Y, f(Y )), (Ỹ , f(Ỹ )) solutions.

[Y − Ỹ ]α + [RY −RỸ ]2α ≲ |y − ỹ| + ρα(X, X̃)

Recall, a geometric rough path (X,X) ∈ C α
g is a rough path such that Sym(Xs,t) = 1

2δXs,t ⊗ δXs,t =∫ t
s
(Xi

r −Xi
s)dX

j
r +

∫ t
s
(Xj

r −Xj
s )dXi

r (integration by parts formula) ⇔ ∃ (X(n)) ∈ C1 such that X(n) → X

uniformly and X(n)
s,t =

∫ t
s
X

(n)
s −X

(n)
r ) ⊗ dX

(n)
r → Xs,t uniformly and supn |||(X(n),X(n))|||α <∞.

These properties are not clear, in fact any random approximation will not have the second property.

Ex: V = R2, X
(n)
t = α

n1/2 (cos(2πnt), sin(2πnt)). Then X(n) → 0 and X(n)
s,t → α2

2

(
0 1
−1 0

)
(t − s) but

X = (0,X) ∈ C
1/2
g .

If f : R → R⊗ R2. Ẏ (n) = f(Y (n)) · Ẋ(n), then by stability, Y (n) → Y that solves dY = f(Y )dX. Then

Ẏ = α2

2 {f1, f2}(y) = α2

2 (f1f
′
2 − f2f

′
1)(y).

Brownian Motion: We define BIs,t =
∫ t
s
(Br − Bs) ⊗ dBr (as L2 limits of Riemann sums). Let BI =

(B,BI) ∈ C α. dY = f(y)dBI ⇔ dY = f(y)dB. Note BI /∈ C α
g since

Sym(BIs,t) =
1

2

(
BI,ijs,t + BI,jis,t

)
=

{
1
2δB

i
stδB

j
st i ̸= j

1
2 (δBist)

2 − t−s
2 i = j

So, fails to be geometric, but by another smooth path.
Define BSs,t = BIs,t+ 1

2 (t−s)Id. Then, Bs = (B,BS) ∈ C α
g since 1

2 (t−s)Id smooth and we have integration

by parts. It turns out that BSs,t = lim
|P |→0

N∑
i=1

(B(ti+ti+1)/2 −Bs)⊗ δBti,ti+1
(Stratonovich). So, we can see that

the intermediate point does matter, unlike Riemann integration.

dY = f(Y )dBS
t ⇔ dY = f(Y ) ◦ dB = f(Y ) · dBI +

1

2
f(Y ) ·Df(Y )dt︸ ︷︷ ︸

difference between Itô and Stratonovich
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Y from Itô integral form is a martingale. Y from Stratonovich integral form is not a martingale, E[Ys,t] =
t−s
2 but we gain nice calculus facts like integration by parts and the chain rule, and we know that we can

approximate by smooth path since geometric rough path.
Wang-Zakai: What is the correct smooth approximation to get (B,B) ∈ C α? If (B(n)) is either B ∗ ρ1/n

where ρ a smooth mollifier, approximation of identity or if take piecewise linear interpolation of stepsize 1/n
and B(n) =

∫
δB(n) ⊗ δB(n), then (B(n),B(n)) → (B,BS) in Cα.

There are other lifts that give geometric rough paths so there are other ways to approximate that will
converge to these other geometric rough paths.

4 Gaussian Measure Theory

• on R:

µ(dx) =

{
1

(2π)1/2σ
exp

(
− |x|2

2σ2

)
dx σ > 0

δ0 σ = 0

density for Gaussian with mean 0 and variance σ ⇔
∫
|x|2dµ = σ2.

• on Rd: A Borel probability measure µ is a (centered) Gaussian measure if ℓ∗µ is a centered Gaussian
measure on R ∀ ℓ : Rd → R linear where ℓ∗µ(A) = µ(ℓ−1(A)) refers the pushforward of µ through ℓ.
In this case, we cannot speak about a single variance. Instead, we define a covariance matrix,

Σij =

∫
xixjµ(dx) = E[XiXj ]

if (X1, . . . , Xd) has distribution µ. Equivalently, for ℓ, ℓ̃ ∈ Rd, Σℓ · ℓ̃ =
∫

(ℓ · x)(ℓ̃ · x)µ(dx). It turns out
that Σ ≥ 0, symmetric, and if Σ is invertible, then

µ(dx) =
1

(2π)d/2det(Σ)1/2
exp

(
−1

2
Σ−1x · x

)
dx

• on Banach spaces:

– Brownian Motion, B(ω) : [0,∞) → Rd, B(ω) ∈ C([0,∞),Rd). Then for A ∈ C([0, T ],Rd),
µ(A) = P[B(ω) ∈ A] is a Gaussian measure.

– White noise, ξ : Rd → R random distribution, E[ξ(x)ξ(y)] = δ(x − y) ⇔ ξ : C∞
c (Rd) → R,

E[⟨ξ, φ⟩⟨ξ, ψ⟩] =
∫
φ(x)ψ(x) dx gives Gaussian measure on some space of distributions.

ξ : L2(Πd) ↪→ L2(Ω). Let (ξk) be a sequence of independent, centered, variance 1, Gaussians
on R. That is, some orthonormal basis for a closed subspace of L2(Ω). (eik·x)k∈Zd orthonormal
basis of L2(Πd). ξ =

∑
k ξke

ik·x is not summable with probability 1. However, ξ ∈ H−s(Πd) ={
T ∈ D′(Πd) :

∑ |ξ̂(k)|2
(1+|k|2)s <∞

}
for some s > 0. That is

(
ξ̂(k)

(1+|k|2)s/2

)
∈ ℓ2(Zd).

E

[∑
k

ξ2k
(1 + |k|2)s

]
=
∑
k

1

(1 + |k|2)s
<∞

for s > d/2. Then L2(Πd) ⊂ H−s(Πd), s > d/2. Thus, white noise is a Gaussian measure in such
H−s(Πd).

µ on L2(Πd) gives most (all?) information about µ supported on H−s(Πd), a much larger space.

Let B be a separable Banach space, µ a Borel probability measure is Gaussian if ℓ∗µ is Gaussian on
R ∀ ℓ ∈ B∗. We can think of mean, m(ℓ) =

∫
ℓ(x)µ(dx),∼ m ∈ B∗∗. We actually get m ∈ B.

B separable Banach space, P(B) = Borel probability measures
Recall, µ ∈ P(B) is a (centered) Gaussian ⇔ ℓ∗µ is a (centered) Gaussian in R for all ℓ ∈ B∗.

Remark 4.1. If µ, ν ∈ P(B) and ℓ∗µ = ℓ∗ν ∀ ℓ ∈ B∗, then µ = ν.

We can define a canonical random variable with measure µ that we can identify with µ.
Let Ω = B, F = Borel sets P = µ. Then Ω ∋ ω 7→ X(ω) = ω ∈ B is an F−measurable random variable

nad P(X ∈ A) = µ(A) by construction.
Then, µ is a Gaussian measure ⇔ ℓ(X) is a centered Gaussian on R ∀ ℓ ∈ B∗.

Definition 4.1. The covariance operator Σµ : B∗ × B∗ → R where (ℓ, ℓ̃) 7→
∫
ℓ(x)ℓ̃(x)µ(dx). This is

well-defined since
∫
ℓ(x)2µ(dx) =

∫
R y

2(ℓ∗µ)(dy) < ∞ since µ is Gaussian. This operator is finite, bilinear,
symmetric, and nonnegative.

Theorem 4.1. (Fernique’s theorem) ∃ universal constant α > 0 such that µ(||x|| > t) ≤ exp
(

−αt2
M2

)
where

M =
∫
||x||µ(dx) ∀ t > M . (In fact, all moments can be estimated in terms of the first moment.)

Proof. Let 0 < τ < t. Then

µ(||x|| > t)µ(||x|| < τ) = (µ⊗ µ)({||x|| > t} × {||x|| < τ}) = µ(Rπ/4{||x|| > t} × {||x|| < τ}) ≤ µ(||x|| > t− τ√
2

)2
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where we use that µ is rotationally invariant to rotate the set {||x|| > t} × {||x|| < τ} by π/4 and estimate
this set in {||x|| < t−τ

2 }. Let c = µ(||x|| < τ). Then by a change of variables,

1

c
µ(||x|| >

√
2s+ τ) ≤ µ(||x|| > s)

c2

Let s0 = τ and sn+1 =
√

2sn + τ and define yn = 1
cµ(||x|| > sn). Then the above inequality says yn+1 ≤

y2n ⇒ yn ≤ y2
n

0 =
(
1
cµ(||x|| < τ)

)2n
=
(
1−c
c

)2n ≤ 3−2n since we can take c to be as close to 1 as we like since
µ(||x|| ≤ τ) → 1 as τ → ∞. Thus, choose τ such that c ≥ 3

4 .

sn =
(
√

2)n+1 − 1√
2 − 1

τ. sn ≤ C2n/2τ

Now, take t ≤ τ → sn ≤ t ≤ sn+1. Then

µ(||x|| > t) ≤ µ(||x|| > sn) ≤ 3−2n = e−C̃(sn+1)
2/τ2

≤ e−C
2t2/τ2

[So,
∫
||x||µ(dx) < ∞. Applying Chebyshev (Markov), µ(||x|| ≥ τ) ≤ M

τ . Take τ = 4M , so µ(||x|| > τ) <
1/4. So, c ≥ 3

4 ]

Corollary 4.1. (1) ∃ constant ||Σµ|| such that Σµ(ℓ, ℓ̃) ≤ ||Σµ||||ℓ||||ℓ̃||. Also, (2) Σ̃ : B∗ → B is continuous.

Proof. 1. ℓ(x) ≤ ||ℓ||B∗ ||x||B

2. Σ̃µ(ℓ) =

∫
xℓ(x)µ(dx)︸ ︷︷ ︸

Bochner integral

(well-defined b/c ||xℓ(x)|| ≤ ||ℓ||B∗ ||x||2B and ||x||2B integrable since x is Gaus-

sian.)

4.1 Ito integral

X ∈ C α([0, T ], V ), 1
3 < α ≤ 1

2 .

Sym(Xst) =
1

2
δXst ⊗ δXst + Est

where Es,t ∈ Sym(V ⊗ V ). For geometric rough paths, Est = 0.
Claim: Est = δγst = γt − γs ⇔ δEstu = Esu − Est − Etu = 0

δEstu = Sym(δXstu) − δ(
1

2
δX ⊗ δX)stu

δXstu = δXst ⊗ δXtu (Chen’s relations)

∴ Sym(δXstu) =
1

2
δXst ⊗ δXtu +

1

2
δXtu ⊗ δXst

δ(
1

2
δX ⊗ δX)stu =

1

2
[δXsu ⊗ δXsu − δXst ⊗ δXst − δXtu ⊗ δXtu]

=
1

2
[δXst ⊗ δXtu + δXtu ⊗ δXst]

∴ δEstu = 0

γ ∈ C2α([0, T ],Sym(V ⊗ V ))

“Chain Rule” Let (Y, Y ′) ∈ Dα
X. We have defined previously, Zt =

∫ t
0
YsdXs, (Z,Z ′) ∈ Dα

X with
Z ′ = Y . Recall also,

δZst = YsδXst + Y ′
sXst + o(|t− s|3α)

Let f smooth. We want an expression for f(Z). We know that (f(Z), f(Z)′) ∈ Dα
X, f(Z)′ = Df(Z)Z ′ =

Df(Z)Y
An naive guess

df(Zt) = Df(Zt)dZt = Df(Zt)YtdXt

is not correct, but does make sense as an integral since Df(Zt)Yt is a controlled rough path.

f(Zt) − f(Zs) = Df(Zs)δZst +
1

2
[D2f(Zs)] : [δZst ⊗ δZst] + o(|t− s|3α)

= Df(Zs)YsδXst +Df(Zs)Y
′
sXst + [Y Ts D

2f(Zs)Ys] : [δXst ⊗ δXst]︸ ︷︷ ︸
correction from guess

+o(|t− s|3α)

= Df(Zs)YsδXst +Df(Zs)Y
′
sXst + [Y Ts D

2f(Zs)Ys] : [Sym(Xst) = δγst]

= Df(Zs)YsδXst + [Df(Zs) + Y Ts D
2f(Zs)Ys]Xst − Y Ts D

2f(Zs)Ysδγst

We can drop the Sym from Sym(Xst) since Y Ts D
2f(Zs)Ys is a symmetric matrix. If A is symmetric and B

is antisymmetric, tr(AB) = tr((AB)T ) = tr(BTAT ) = tr(ATBT ) = −tr(AB) = 0.
Define Wt = df(Zt)Yt, W

′
t = Df(Zt)Y

′
t + Y Tt D

2f(Zt)Yt. This can be shown from δWt = W ′
sδXst +

RWst︸︷︷︸
≲|t−s|2α

. Then

f(Zt) − f(Zs) = WsδXst +W ′
sXst − Y Ts D

2f(Zs)Ys : δγst + o(|t− s|3α)
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Since Y Ts D
2f(Zs)Ys ∈ Cα and γ ∈ C2α, we can define this as Young integral. Thus,

f(Zt) − f(Zs) =

∫ t

s

(Wr,W
′
r)dXr −

∫ t

s

Y Tr D
2f(Zr)Yrdγr

This is made rigorous by the sewing lemma.

Example 4.1. Consider the Brownian motion B with the Itô lift, BI = (B,BI). We know that Sym(BIst) =
1
2δBst⊗ δBst− t−s

2 Id⇒ γt = − t
2Id. Thus, for (Y, Y ′) ∈ Dα

B and dZt = Yt · dBt and f smooth, we have Itô’s
formula

df(Zt) = Df(Zt)YtdBt +
1

2
tr(Y Tt D

2f(Zt)Yt)dt

For dZ̃t = Yt ◦ dBt Stratonovich lift, γ = 0 so df(Z̃t) = Df(Z̃t)YtdBt obeys the chain rule.

4.2 Gaussian measure

Example 4.2. Let B be a separable Hilbert space (B∗ = B).

Theorem 4.2.

Let B be a separable Hilbert space (B∗ = B).

Definition 4.2. T : H → H, a continuous, linear operator is trace class if
∞∑
n=1

⟨Ten, en⟩H < ∞ for some

orthonormal basis (en)

Theorem 4.3. Σ̃µ : B → B is trace class.

Proof. Let (en) be an orthonormal basis of B. Then

⟨Σµen, en⟩ =

∫
⟨x, en⟩2µ(dx) =

∞∑
n=1

Σµ⟨en, en⟩ =

∫
||x||2µ(dx) <∞

by the monotone convergence theorem.
Further, given any nonnegative, symmetric, trace-class operator T : B → B, then ∃ a centered Gaussian

measure µ on B with T = Σ̃µ.

In general, for B a separable Banach space, Σ̃µ : B∗ → B is compact.

Example 4.3. Let B = C([0, T ],R) with sup norm. Let µ be the Wiener measure. Is µ Gaussian? B∗ =
finite Borel measure on [0, T ]. For instance, δt ∈ B∗ where δt(x) = x(t) are “evaluation measures”. In

general, ℓ(x) =
∫ T
0
x(s)ℓ(ds) where x(s) is a Brownian motion path. If we approximate this integral by step

functions, it is clear that it is the sum of independent Gaussian random variables and this is true in the limit
as well. Let x ∈ B.

Σµ(ℓ, ℓ̃) =

∫
ℓ(x)ℓ̃(x)µ(dx) = E

[∫ T

0

B(s)ℓ(ds)

∫ T

0

B(s)ℓ̃(ds)

]

=

∫ T

0

∫ T

0

E[B(s)B(t)]ℓ(ds)ℓ̃(dt) =

∫ T

0

∫ T

0

s ∧ tℓ(ds)ℓ̃(dt)

Assume ℓ(ds) = f(s)ds, Then

Σ̃µ(ℓ)(t) =

∫
xℓ(x)µ(dx)(t) = E

[
B(t)

∫ T

0

B(s)ℓ(ds)

]
=

∫ T

0

(s ∧ t)ℓ(ds) = h(t)

h′(t) =
d

dt

[∫ t

0

sf(s) ds+ t

∫ T

t

f(s) ds

]
= tf(t) +

∫ T

t

f(s)ds− tf(t) =

∫ T

t

f(s) ds

[Note: finite linear combinations of δ are dense in the space of measures]

4.3 Cameron-Martin Space

Define
H̃µ = Σ̃µ(B∗) = {h ∈ B : ∃ h∗ ∈ B∗, Σ̃µ(h∗) = h(⇔ Σµ(h∗, ℓ) = ℓ(h) ∀ ℓ ∈ B∗}

Given h, h̃ ∈ H̃µ, define ⟨h, h̃⟩Hµ = Σµ(h∗, h̃∗) where Σµh
∗ = h and Σµh̃

∗ = h̃. Then we can define a norm
||h||2Hµ

= ⟨h, h⟩Hµ = Σµ(h∗, h∗).

Suppose Σ̃µh
∗ = Σ̃µh̃

∗ = h. Then

Σµ(h∗, h∗) = h∗(h) = h∗(Σ̃µh̃
∗) = Σ̃µ(h̃∗, h∗) = h̃∗(Σ̃µh

∗) = h̃∗(h) = Σµ(h̃∗, h̃∗)

so the norm is well-defined.
Note: H̃µ need not be complete.

Let Hµ be the completion of H̃µ under || · ||Hµ
.

Claim: Hµ ⊂ B.
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Proof. Let h ∈ H̃µ. (We want control of B norm in terms of Hµ norm)

||h||2B = sup
ℓ∈B∗,||ℓ||=1

ℓ(h)2 = sup
||ℓ||=1

Σµ(ℓ, h∗) ≤ sup
||ℓ||=1

Σµ(ℓ, ℓ) Σµ(h∗, h∗)︸ ︷︷ ︸
||h||2Hµ

≤ ||Σµ||||h||2Hµ

µ = centered Gaussian measure, Σµ : B∗ → B, H̃µ = Σµ(B∗) where for h ∈ H̃µ, ||h||2 = Σµ(h∗, h∗) where
Σµh

∗ = h. [Note: We drop the ∼ to differentiate between Σµ as a map and as a bilinear operator. This
should be clear from context.]

Remark 4.2. h 7→ h∗ not uniquely defined. For example, µ = δ0. Then Σµ ≡ 0 and Hµ = {0} so
Σµh

∗ = 0 ∀ h∗ ∈ B∗.

In general, if Σµℓ = Σµℓ̃ then∫
|(ℓ− ℓ̃)(x)|2µ(dx) = Σµ(ℓ− ℓ̃, ℓ− ℓ̃) = (ℓ− ℓ̃)(Σµ(ℓ− ℓ̃)) = 0

Thus, we have an isometry from Hµ
i
↪→ L2(B, µ) where H̃µ ∋ h 7→ h∗ and ||h||2Hµ

= Σµ(h∗, h∗) =

||h||L2(µ).
Define the reproducing kernel Hilbert Space Rµ = i(Hµ) ⊂ L2(B, µ) = space of square integrable random

variables. Recall, by letting B = Ω, µ = P, X(ω) = ω we can make µ be the distribution of random variable.
Then ℓ ∈ Rµ (ℓ = ih) ⇒ ℓ is centered Gaussian with variance ||ℓ||2L2(µ) = ||h||2Hµ

.

Example 4.4. B = C([0, T ],R), µ = Wiener measure

Exercise: If f ∈ L1([0, T ]) ⊂ B∗,Σµf = h ∈ B, then h(t) =
∫ t
0

[∫ T
s
f(r) dr

]
ds. That is

−h′′(t) = f(t)

h(0) = 0

h′(T ) = 0

and ||h||2Hµ
=

∫ T

0

f(t)h(t)dt =

∫ T

0

|h′(t)|2dt

⇒ Hµ = {h absolutely continuous function with h(0) = 0 and h′ ∈ L2}. H̃µ = {h absolutely continuous

function with h(0) − 0, h′ ∈ L2 ∩BV } so H̃µ ⊊ Hµ

Proposition 4.1. If µ, ν are centered Gaussian measures on B and Hµ = Hν and ||h||µ = ||h||ν ∀ h ∈ Hµ.
Then µ = ν.

Proof. Since we already know that µ and ν are centered Gaussians, it suffices to show ℓ∗µ = ℓ∗ν ∀ ℓ ∈ B∗ ⇒
it suffices to show that

∫
ℓ(x)2µ(dx) =

∫
ℓ(x)2ν(dx).

Let µ be a centered Gaussian, h ∈ B. Define Th : B → B where y 7→ y + h. Then we can consider the
pushforward, T ∗

hµ, a measure on B. For example, B = Rd, Σµ invertible ⇔ Σµ(ℓ, ℓ) > 0 ∀ ℓ ̸= 0.
Then take f ∈ C(Rd) ∩ L1(µ) so∫

f(x)(T ∗
hµ)(dx) =

1

(2π)d/2det(Σ)1/2

∫
f(x+ h)e−

1
2Σ

−1(x,x) dx

=
1

(2π)d/2det(Σ)1/2

∫
f(x)e−

1
2Σ

−1(x−h,x−h)dx

=
1

(2π)d/2det(Σ)1/2

∫
f(x)eΣ

−1(h,x)− 1
2Σ

−1(h,h)µ(dx)

⇒ dT ∗
hµ = exp

(
Σ−1(h, x) − 1

2Σ−1(h, h)
)
µ(dx) so T ∗

hµ is absolutely continuous with respect to µ.
x ∈ B, h ∈ Hµ → i(h) ∈ Rµ ⊂ L2(B, µ) that is “Σi(h) = h”

dT ∗
hµ = exp

ih(x) − 1

2
ih(h)︸ ︷︷ ︸∫

i(h)2(x)µ(dx)=||h||2Hµ

 dµ = exp(ih(x) − 1

2
||h||2Hµ

)

Theorem 4.4. dim Hµ = +∞. Then T ∗
hµ is absolutely continuous with respect to µ ⇔ h ∈ Hµ.

Proof. NTS T ∗
hµ = exp

(
i(h)(x) − 1

2 ||h||
2
Hµ

)
dµ. We can do this by taking the Fourier transform and showing

that the Fourier transforms are the same.

Covariance is a very natural inner product.
We could have proceeded as follows:

Fernique’s thm ⇒ B∗ ⊂ L2(B, µ) ⇒ Rµ = B∗||·||L2
a Hilbert space

where we identify functionals in B∗ by µ−a.e. equivalence and ||ℓ||2L2(µ) = Σµ(ℓ, ℓ).

Σµ : B∗ → H̃µ ⊂ B where again we take B∗ up to µ−a.e. equivalence. Σµ extends to an isometry
Rµ → Hµ and i : Hµ → Rµ goes the other way.

Recall L2(µ,B) is a collection of random variables. Hence, Rµ are random variables, in fact they are
Gaussian.
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Example 4.5. Let B = C([0, T ]), µ = Wiener measure. Then Rµ =
{∫ T

0
f(t)dWt : f ∈ L2[0, T ]

}
and

Hµ =
{
h(t) =

∫ t
0
f(s)ds : f ∈ L2[0, T ]

}
.

[Note: The integrals are defined since f ∈ L2 and deterministic and therefore progressively measurable
etc.]

[Note: Rµ is sometimes call the First Wiener Chaos]

[Note: i : Hµ → Rµ, h 7→
∫ T
0
h′(s)dWs]

Lemma 4.1. µ, ν centered Gaussian on B. Hµ = B,Hµ = Hν and || · ||µ = || · ||ν on Hµ. Then µ = ν

Proof. Take ℓ ∈ B∗. It suffices to show ℓ∗µ = ℓ∗ν.
Σµ(ℓ, ℓ) = ℓ(h) where h = Σµℓ ∈ Hµ = ||h||2. Also, h ∈ Hν . We don’t know that h ∈ H̃ν . Let h∗ = iνh.

There exists {ℓn} ⊂ B∗ such that ||ℓn − h∗||L2(ν) → 0. Take hn = Σνℓn. Then

ℓ(h) = ℓ(hn) + ℓ(h− hn) ≤ Σν(ℓ, ℓn) + ||ℓ||B∗ ||h− hn||B

Since convergence in Hν implies convergence in B.

Σν(ℓ, ℓn) ≤ ||ℓ||L2(ν)||ℓn||L2(ν) → ||ℓ||2L2(µ)︸ ︷︷ ︸
||h||2Hν

= Σµ(ℓ, ℓ) ≤ ||ℓ||L2(ν) ||h∗||L2(ν)︸ ︷︷ ︸
||h||Hν=||h||Hµ

So, ||ℓ||L2(µ) ≤ ||ℓ||L2(ν) and similarly, ||ℓ||L2(ν) ≤ ||ℓ||L2(µ)

Thus, ℓ∗µ and ℓ∗ν are both centered Gaussian measures with the same variance, ||ℓ||L2(µ) = ||ℓ||L2(ν), so
ℓ∗µ = ℓ∗ν.

Lemma 4.2. h ∈ Hµ, ℓ ∈ B∗. Then ℓ(h) = ⟨ℓ, ih⟩L2(µ)

Remark 4.3. If h ∈ H̃µ, this is essentially by definition. In other words, ih need not be in B∗ for “ℓ(h) =
Σµ(ℓ, ih)”

Proof. Let hn → h in Hµ where hn ∈ H̃µ. Then

ℓ(hn) = Σµ(ℓ, ihn)︸ ︷︷ ︸
⟨ℓ,ih⟩L2(µ)

⇒ ℓ(h) = ⟨ℓ, ih⟩L2(µ)

Lemma 4.3. For x ∈ B, define ||x|| = sup {ℓ(x) : ℓ ∈ B∗,Σµ(ℓ, ℓ) ≤ 1}}. Then

1. If x ∈ Hµ, then ||x|| = ||x||Hµ
. In particular, ||x|| <∞.

2. If ||x|| <∞, then x ∈ Hµ

3. ⇒ Hµ = {x ∈ B : ||x|| <∞}

Proof. 1. Let h ∈ Hµ. Let ℓ ∈ B, Σµ(ℓ, ℓ) ≤ 1. Then ℓ(h) = ⟨ℓ, ih⟩µ ≤ ||ℓ||L2(µ)︸ ︷︷ ︸
Σµ(ℓ,ℓ)

||ih||L2(µ)︸ ︷︷ ︸
||h||Hµ

≤ ||h||Hµ .

Taking the sup over all such ℓ, we get that ||h|| ≤ ||h||Hµ
<∞

Take ℓn
L2(µ)→ ih, ℓn ∈ B∗. Then,

||h|| ≥ ℓn(h)

Σµ(ℓn, ℓn)1/2
=

⟨ℓn, ih⟩µ
||ℓn||L2(µ)

n→∞→
||ih||L2(µ)

||ih||L2(µ)

[Note: If h ∈ H̃µ, then ih maximizes the sup in ||h||. The norm ||x|| generalizes to when h /∈ H̃µ via
approximation.]

2. Assume ||x|| <∞. Define X : B∗ → R where ℓ 7→ ℓ(x). (Copying proof that B ↪→ B∗∗.

Claim: If ℓ = 0 µ−a.e. then X(ℓ) = 0 which by linearity implies X(ℓ) = X(ℓ̃) if ℓ = ℓ̃ a.e.

ILLEGAL:
∣∣∣X ( ℓ

(Σµ(ℓ,ℓ))1/2

)∣∣∣ =
∣∣∣ ℓ(x)
(Σµ(ℓ,ℓ))1/2

∣∣∣ ≤ ||x|| <∞ so |X(ℓ)| ≤ ||x||||ℓ||L2(µ)

What if Σµ(ℓ, ℓ) = 0? Instead take ℓ ̸= 0 a.e. and compute,

ℓ+ ϵℓ

||ℓ+ ϵℓ||L2(µ)

(x)

Thus, X extends to a bounded linear functional on Rµ. So, there exists an x∗ ∈ Rµ : x(ℓ) =
⟨ℓ, x∗⟩L2(µ) ∀ ℓ ∈ Rµ.

Let h = Σµx
∗. By definition,∀ ℓ ∈ B∗, x(ℓ) = ⟨ℓ, x∗⟩µ = ℓ(h) but x(ℓ) = ℓ(x), so x = h ∈ Hµ.

Corollary 4.2. If x /∈ Hµ, then ||x|| = ∞ i.e. there exists {ℓn} ⊂ B∗ : Σµ(ℓn, ℓn) = 1 and ℓn(x) ≥ n.

Theorem 4.5. (Cameron-Martin) h ∈ B. Then µ and T ∗
h are either

1. Absolutely continuous with respect to each other, if h ∈ Hµ.
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2. Mutually singular with respect to each other if h /∈ Hµ

Remark 4.4. 1. Suppose µ = Hµ
B

. If dim Hµ = ∞, then µ(Hµ) = 0

2. If B = Rd, then Hµ is the support of the measure.

3. Think of the Cameron Martin theorem in terms of both degenerate and nondegenerate Gaussian
measures in Rd.

Proof of part 2 of Cameron-Martin theorem (the proof of part 1 is done previously):

Proof. Let h /∈ Hµ ⇒ ∃(ℓn) ⊂ B∗ such that Σµ(ℓn, ℓn) = 1 and ℓn(h) ≤ −n. (We can do this since if
ℓn(h) ≥ n, −ℓn(h) ∈ B∗ with the same norm.) Then it suffices to show ||T ∗

hµ−µ||TV = 2 that is, there is no
overlapp or cancellation.

By the triangle inequality, ||T ∗
hµ− µ||TV ≤ 2. Also,

||T ∗
hµ− µ||TV (B)︸ ︷︷ ︸

sup over all partitions

≥ ||ℓ∗nT ∗
hµ− ℓ∗nµ||TV (R)︸ ︷︷ ︸

only partitions over sets Borel meas images of ℓn

Set mn = −ℓn(h). Then

||ℓ∗nT ∗
hµ− ℓ∗nµ||TV (R)||TV (R) = ||N (mn, 1) −N (0, 1)||TV (R)

=
1√
2π

∫ ∞

−∞

∣∣∣e−y2/2 − e(y−mn)
2/2
∣∣∣2 dy

=
2√
2π

∫ mn/2

−∞

(
e−y

2/2 − e(y−mn)
2/2
)2
dy (by symmetry)

= 2P[N (0, 1) ≤ mn/2] − 2P[N (mn, 1) ≤ mn/2]︸ ︷︷ ︸
P[N (0,1)>mn/2]

= 2 (1 − 2P[N (0, 1) > mn/2])

≥ 2(1 − 2P[N (0, 1) > n/2])
n→∞−→ 2

[Note: The Cameron-Martin theorem tells us which direction we can go and have an equivalent measure.]

Corollary 4.3. (a) Hµ =
⋂
{V : V ⊂ B a linear subspace of B, µ(V ) = 1}

(b) µ(Hµ) = 0 if dim(Hµ) = ∞.

Proof. (a) Let V ⊂ B be a linear subspace with µ(V ) = 1. Let h ∈ Hµ. By the Cameron-Martin theorem,
µ(V + h) = T ∗

hµ(V ) = 1 (that is because µ and T ∗
hµ are absolutely continuous with respect to each

other). Then V ∩ (V + h) ̸= ∅ ⇒ h ∈ V ⇒ Hµ ⊂ V .

Now, x /∈ Hµ ⇒ ∃(ℓn) ⊂ B∗, ||ℓn||L2(µ) = 1 and ℓn(x) ≥ n. Define V =

{
y ∈ B : |y|2 =

∞∑
n=1

|ℓn(y)|2
n2 <∞

}
.

Then |x|2 =
∞∑
n=1

|ℓn(x)|2
n2 ≥

∞∑
n=1

1 = +∞ so x /∈ V . However,
∫
|y|2µ(dy) =

∞∑
n=1

1
n2

∫
|ℓn(y)|2µ(dy)︸ ︷︷ ︸

1

< ∞

so |y| <∞ µ−a.e. ⇒ µ(V ) = 1.

(b) Let (e∗n) ⊂ Rµ(⊂ L2(B, µ)) be an orthonormal basis. We know that (en) are N (0, 1) and orthogonal,
E[e∗n(ω)e∗m(ω)] = δmn. Further, we know for n ̸= m, (e∗n, e

∗
m) is a Gaussian vector with covariance

matrix

(
1 0
0 1

)
, so (e∗n) are independent.

[Note: Orthogonality does not imply independence in general, this is only due to (e∗n) being Gaussian.]

We also know lim supn→∞ e∗n(x) = +∞. (If I wait long enough, it will be large: Borel Cantelli)

Since ien = e∗n, (en) is an orthonormal basis of Hµ.

Yet, x ∈ Hµ, ||x||2Hµ
=

∞∑
n=1

⟨x, en⟩2Hµ
=

∞∑
n=1

e∗n(x)2 <∞.

For these two things to be true simultaneously, it must be that µ(Hµ) = 0. The complement of where
lim sup e∗n(x) = +∞ has measure 0 and we have show that Hµ is a subset of this set.

Recall: If x ∈ Hµ and ℓ = 0 µ−a.e., then ℓ(x) = 0. This is kind of crazy as it says that the information
contained in a null set dictates almost everything. This is because of the structure of the measure µ.

Theorem 4.6. Let (en) be an orthonormal basis for Hµ. Let (ξn)∞n=1 i.i.d. N (0, 1). Define XN (ω) =
N∑
n=1

ξn(ω)en (XN is a B−valued random variable). Then with probability 1, XN
N→∞−→ X in B where X is a

B−valued random variable with law µ.
[Note: With probability 1, X does not take values in Hµ, but in the bigger space B.]
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Proof. ℓ ∈ B, ℓ(XN (ω)) → ℓ(X) a.s. Take (Ω,P) = (B, µ) and ξn = e∗n = ien. Then XN (x) =
N∑
n=1

e∗n(x)en →

X(x) = x.

Look at ℓ(XN (x)) =
N∑
n=1

e∗n(x)ℓ(en) =
N∑
n=1

⟨ℓ, e∗n⟩L2(µ)e
∗
n(x)

N→∞−→ ℓ(x) in L2(µ).

Lemma 4.4. µ a Gaussian measure on a separable Banach space B. Let B′ ↪→ B (continuous inclusion) be
a separable Banach space such that µ(B′) = 1. Then, Hµ|B′ = Hµ

Proof. (sketch) L2(B, µ) = L2(B′, µ|B′ but it is not clear that B∗ = (B′)∗ only that B∗ ⊂ (B′)∗.

Hµ =
⋂

{V ∈ B : µ(V ) = 1} and Hµ|B′ =
⋂

{V ⊂ B′ : µ(V ) = 1} ⊃ Hµ

However B′ is such that µ(B′) = 1, so Hµ =
⋂
{V ∩ B′ : µ(V ) = 1} = Hµ|B′

Now, we need to show ||h||Hµ
= ||h||Hµ|B′

.

h ∈ Hµ ⇒ h =
∫
B xℓ(x)µ(dx) =

∫
B′ xℓ(x)µ(dx) where ℓ ∈ Rµ = B∗L

2

is unique (ℓ = ih). ih = ℓ ∈ B∗ ⊂
(B′)∗ = Rµ|B′ and ||h||Hµ = ||ℓ||L2(µ) (L2 in B and B′), so ||h||Hµ|B′

.

Thus, the B on which we define µ doesn’t matter as long as it contains the support of µ.

Theorem 4.7. (Lyons)(Motivation for Rough Path theory) ∃! separable Banach space B such that C1([0, 1],R) ↪→
B ↪→ C0([0, 1],R), the Wiener measure µ is supported in B, and (C1×C1) ∋ (f, g) 7→

∫ 1

0
f(g)g′(s)ds extends

continuously to B × B.

[Note: {BM paths}
a.s.
⊂ Cα0 = C1

||·||Cα

is a separable Banach space but does not satisfy the last hypothesis
of the theorem.]

Proof. (µ,B) → Hµ = {h : h(0) = 0, h′ ∈ L2([0, 1])} ⊂ H1([0, 1]) and ||h||2Hµ
=
∫ 1

0
|h′s|ds. (This is a norm

since h(0) = 0 and the P.C. inequality.

Define e0(t) = t and en(t) = sin(2πnt)√
2πn

, e−n(t) = 1−cos(2πnt)√
2πn

for n ∈ N (Fourier Modes). [en(0) =

0, en(1) = 0 ∀ n ̸= 0] Then {en} is ONB for Hµ. Let {ξn} be iid N (0, 1). Define XN (t) =
∑

0<|n|≤N
ξnen(t)

and YN (t) =
∑

0<|n|≤N
− sgn(n)ξ−n︸ ︷︷ ︸

ξ̃n

en(t).

Then µ−a.s. XN → X and YN → Y in B. [Note: X and Y are actually brownian bridges since we left
out the n = 0 terms]

ξ0t+X and ξ0t+ Y are BM. (uses that µ(B) = 1)
Assume that we can integrated on B × B. Then µ− a.s.

I =

∫ 1

0

XN (t)Y ′
N (t)dt→ something finite

For n > 0, e′n(t) =
√

2 cos(2πnt), e′−n(t) =
√

2 sin(2πnt)

I =

N∑
n=1

ξ2n

∫ 1

0

sin2(2πnt)

πn
dt+

N∑
n=1

ξ2−n

∫ 1

0

cos2(2πnt)

πn
dt

=

N∑
n=1

ξ2n
2πn

+

N∑
n=1

ξ2−n
2πn

=

N∑
n=1

ξ2n + ξ2−n
2πn

(NTS that µ− a.s. this diverges).

P

[
N∑
n=1

ξ2n
2

≤ (1 − ϵ)

N∑
n=1

1

n

]
= P

[
N∑
n=1

ξ2n − 2

n
≤ −ϵLN

]

where LN =
N∑
n=1

1
n . Then, by Chebyshev,

P

[
N∑
n=1

ξ2n − 2

n
≤ −ϵLN

]
≤

E
∣∣∣∣ N∑
n=1

ξ2n−1
n

∣∣∣∣2
ϵ2LN

Since E[ξ2n] = 1, E[ξ2n − 1] = 0. By independent,
N∑
n=1

E[|ξ2n − 1|] = C, so

E
∣∣∣∣ N∑
n=1

ξ2n−1
n

∣∣∣∣2
ϵ2LN

≤ C

ϵ2(log(N))2

so the sequences goes to ∞ in measure.
We can pick a subsequence such that the terms are summable and apply Borel-Cantelli to show that the

subsequence converges a.s. Then use monotonicity of the sum to show that the sequence converges a.s.

22



Rough Paths Spring 2024

White noise: Random “function” ξ : Ω × Πd → R such that E[ξ(x)ξ(y)] = δ0(x − y). As a distribution
E[⟨ξ, φ⟩⟨ξ, ψ⟩] = ⟨φ,ψ⟩L2 . Perhaps ξ ∈ L2(Πd) ?

Let {en} be a Fourier basis, ξ(x) =
∑
n∈Zd

ξnen(x) for some ξn iid N (0, 1). then µ a centered Gaussian

measure on L2(Πd) = B = B∗ where µ(A) = P(ξ(·) ∈ A).
Then Σµ(φ,ψ) = ⟨φ,ψ⟩L2 . Then Σµφ = φ since

⟨Σµφ,ψ⟩ − Σµ(φ,ψ) = ⟨φ,ψ⟩.

By Id is not compact, so ξ cannot be L2(Πd)− valued.
What we’ll do is take Hµ = L2(Πd) and find a suitable B with Hµ as is Cameron-Martin space.
We want to find a space where the Cameron-Martin space is L2. Define

H−s(Πd) =


f ∈ D′(Πd) :

∑
k∈Zd

|f̂(x)|2

(1 + |k|2)s︸ ︷︷ ︸
||f ||2

H−s

<∞


Then ξ(x) =

∑
k∈Zd

ξkek(x) where (ek) is Fourier basis of L2(Πd) is in H−s for s > d/2 (since E[||ξ||2H−s ] =∑
k∈Zd

1
(1+|k|2)s ] <∞ for s > d/2).

For φ ∈ H−s, φ̂(k)
(1+|k|2)s = ̂(Id− ∆)−sφ(k), “undoing 2 derivatives”. So for φ,ψ ∈ H−s,

⟨φ,ψ⟩H−s = ⟨(Id− ∆)−sφ,ψ⟩L2 .

So, we define µ(A) = P(ξ ∈ A) for A ⊂ H−s ⇒ µ is Gaussian measure on H−s(Πd). Then the covariance
operator, φ,ψ ∈ (H−s)∗ = H−s,

Σµ(φ,ψ) = E[⟨φ, ξ⟩H−s⟨ψ, ξ⟩H−s ] =
∑
k∈Zd

φ̂(k)ψ̂(k)

(1 + |k|2)2s
= ⟨(Id− ∆)−sφ,ψ⟩H−s

since the cross terms vanish (independence). Thus, Σµ = (Id− ∆)−s : H−s → H−s.

L2(Πd)
i
↪→ H−s(Πd), then we also have the adjoint map, (H−s(Πd))∗ = H−s i∗→ (L2(Πd))∗ = L2(Πd).

So, for φ ∈ L2 and f ∈ H−s

⟨i∗f, φ⟩L2 = ⟨f, iφ⟩H−s = ⟨(Id− ∆)−sf, φ⟩L2 ⇒ i∗ = (Id− ∆)−s ⇒ Σµ = ii∗

The Cameron-Martin Space is L2: starting with φ ∈ H̃µ ⇒ ∃f ∈ H−s such that φ = (Id− ∆)−sf ∈ Hs

(add 2s derivatives) and norm

||φ||Hµ
= Σµ(f, f) = ⟨(Id− ∆)−sf, f⟩H−s = ⟨(Id− ∆)−sf, (Id− ∆)−sf⟩ = ||φ||2L2

Then Hµ = HsL
2

= L2.

• White noise over a general Hilbert space, H: (1) find Hilbert space K such that H
i
↪→ K where

ii∗ : K → K is trace class, (2) define µ to have covariance operator ii∗, (3) then
∑
n ξnen ∼ µ where

(en) is ONB of H.

• Spacetime white noise on [0, T ]×Πd “W (t, x) =
∫ t
0
ξ(s, x)ds” where “ξ(t, x)”. Then E[W (s, x)W (t, y)] =

(s ∧ t)δ(x − y) ⇒ W (t, x) =
∑
k∈Zd

W k
t ek(x) where (W k)k∈Zd independent Brownian motions. W is

called a cylindrical Brownian motion over L2(Πd) which is specified by a Gaussian measure µ on
C([0, T ], H−s(Πd)), s > d/2. We only need the covariance to specify this measure.

φ,ψ ∈ H−s, E[⟨Ws, φ⟩H−s⟨Wt, ψ⟩H−s ] = (s ∧ t)⟨(Id− ∆)−sφ,ψ⟩H−s

Hµ = H1
0 ([0, T ], L2(Πd)) (where here the 0 indicates that h(t = 0) = 0.

Example 4.6. (Stochastic Heat Equation)

du = (uxx − λu)dt+ σdW

where W is cylindrical BM over L2(Πd). We can completely diagonalize this operator, u(t, x) =
∑
k∈Z

Y kt ek(x).

For (ek) eigenfunctions, (∂2x−λ)(ek = −(k2 + λ︸ ︷︷ ︸
µk

)ek. Then we get a system of SDEs, dY kt = −µkY kt dt+σdWt.

Further, ∃γ0 such that Y k0 = γk0 ∼ N (0, γ2) such that Y k0 ∼ Y kt . In this case, Y kt ∼ N
(

0, e−2µktγ2 + (1 − e−2µkt σ
2

2µk

)
so we choose γ2 = σ2

2µk
.

|Yk| ∼ σ√
µj

∼ 1
k ∴ u(t, ·) ∈ Hs ∀ s < 1

2 .

We can lift u(t, ·) to Rough Path space, (u(t, ·),≊(t, ·)) ∈ C α
g for α < 1/2 (just like BM)

**These notes were taken from a class taught by Ben Seeger in Spring 2024 at UT Austin.**
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