Rough Paths Spring 2024

1 Motivation

Consider a classical ODE )
Y:f:f(tan) YOZyERn

Then we know that 3! solution if f is Lipschitz in Y; (in L} way). An important subclass are controlled
ODEs which are of the form . .
Vi=fY)X:e Yo=y

for X, f, and y given. For nice enough f and X,

Y, =y+/ f(Y2)dX,
0

proceed by Picard iteration, find a fixed point. We can think of X as an input. We are interested in the
map X — Y. Formally, AY = f(Y)AX or dY; = f(V;)dX:.

e What if X isrough? X € C%, 0 < «a < 1. For smooth f, we should expect Y inherits same regularity
as X - Y e(C®

e Strategy: f¢— f, g¢ = g where f¢, g € C.

t t
/ fec ds / fdgs
0 0

1. If f¢ — f uniformly (f € C) and g¢ — ¢ uniformly (g € C'), then this integral makes sense.
2. If f¢ — f uniformly (f € C) and ¢¢ — ¢ in L' (g € Wh1)

‘/f;g; ds [ g ds /O FEE — s) d8+/0t(f§ ~ f)gs ds

< Ollg* =gl + 1/ = flleollgll — 0 (2)

<

Further, integrating by parts, we see

t t
/ Fods ds = fuge — fogo — / gofs ds
0 0

so f € Wbt and g € C also works. Stronger: f € C!, g€ C.

e Can we interpolate? f € C% g € C1=*? NOPE.

1.1 Young’s integration theory

We can approximate the integral

1 N—-1
dgs = i (G — gn.
/0 f g ‘A1|r£)10 ; ftl (gt,+1 gt,,)
where A ={0=ty <t; <--- <ty =1} and |A| = max{|t;+1 — t;|}. For a small interval [s,¢] ,
¢
/ frdgr = fs(gt - gs) + Rs,t = fségs,t + Rs,t
S

where the remainder R, is of higher order. For f € C* and g € CP, a, B > 0 what can we say?

t
Rs,t = / (fT - fs)dgT = 6ft,s(sgt,s + R275
where hopefully RLS is of hopefully even higher order. Then since f € C* and g € CP,

Rs: < [f]oc[g]ﬁﬁ - 5|a+ﬂ + R/s,t

Then, considering the whole integral as the sum of integrals over the small intervals [t;,t; 1],

1 N-1
/ frdgr - Z fti (gti+1 - gti)
0 i=0

N-1
< [flaldgls Z ltip1 — t:|*tP (3)
i=0

N-1

= [flalgls Z [tigr — ] TP b — ] (4)
i=0
< [flalglslA[**P71 0 (JA] = 0) (5)

fora+8>1sothat a+5—1>0.

N-1
Theorem 1.1. (Young’s integration) If o + 8 > 1, then fol fsdgs = ‘ii‘m > fe(gtipn — 9¢,) exists for
—0 =0

feC>and ge CP and (f,g) — f; fsdgs is bilinear and continuous* on C* x C¥,
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Note: C*, C? are not separable spaces. We mean continuity in f,, — f uniformly with bounded seminorm
sup,en(fla < o0

We can think of this integral fol frdgr = (fg,1[s,4) as testing fg against 1[, , (which we can approximate
by test functions).

t
Yi— f(Y)dXs, Yo—y—Yi—y+ /0 f(Y.)dX, (YDE) (6)

For f smooth and X € C'®, we can hope (at best) Y € C®. Then, f(Y) € C*. Thus, fora+a >1— a > 1/2,
we can use Young’s integration.

Theorem 1.2. For a > 1/2, f smooth, X € C%, then 3! solution ¥ to YDE and X — Y is locally lipschitz
continuous.

1.2 Brownian motion as a motivating example
E[(B; — B,)?] =t — s — “B; — By ~ |t — 5|'/?” that is the BM has regularity less than 1/2.
Theorem 1.3. For 0 < a < 1,

1. fa<1/2, Be C?* as.

2. f a>1/2, B¢ C* as. (not even locally) — can’t do Young’s integration

3. B is nowhere differentiable and infinite variation a.s. — can’t use BV theory

So, we need a new theory of integration to deal with Brownian motion paths.
Consider again our ODE, but we allow X to be brownian motion.

dY; :f(Yt)dXt
}/0 = ZU>X0 =0

X and Y could be in R? or infinite dimensional. Ex:

V=X

dY? = Y;'dX? Ve _ ftdeX2
t — Jo s s

dY} = dX}
{
y=20

If X? are BM, then Young integral or Riemann-Stieltjes integration do not work since X is not regular
enough.

We can think of the Brownian motion in two ways: (1) as a process B; that a sequence of real-valued
random variables, i.e. at every time ¢, B, is a real-valued random variable, or (2) as a random variable
on the space of paths, i.e. for each B(w) is an entire path. From this second interpretation, we have the
definition of a Wiener measure, that is, the probability distribution on the space of continuous functions g
with g(0) = 0 induced by a Brownian motion.

Let p be a Wiener measure on C[0,1]. That is, u(A) = P[B(w) € A] for A C [0, 1].

Theorem 1.4. There exists no separable Banach space B C C[0, 1] such that
1. w is supported on B
2. (f,9)— fol f(t)g'(t) dt on C x C! extends continuous to B x B

We can think of B as a regularity class constraint. This theorem says that there are no B on which we
can define fol fdg that also contains almost all the paths of a BM.
Recall the Stieltjes integral

1
I:=[ XldX?= 1l Xloxz
/O s s \Al\go Z s s,t
[s,t]leA

Take {A,} to be the sequence of dyadic partitions (nested and equally spaced)

2" —1
Ly =) X} yon0X7 o (g1 jon
k=0
Let A,, = X16X2,
2" —1
I, — Iy = Z [Akjan (k1) /2n — Akjan (2k+1) /2741 — A@k41)/20+1 (k1) /27 ]
k=0
2" —1

= Z 5X1%/2n7(2k+1)/2n+1 5X(22k+1)/2n+1,(k+1)/2n
k=0

Since E[(6X} ,)?] =t —s

2" -1
~ Z tnt1 — tn] = O(1)
k=0
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If we use Young’s inequality to get (§X*)? we find that the I,, are not Cauchy. We should show {I,,} Cauchy
in a different norm.

2" —1

E[(In = In+1)7] = Z 0Xjan 4172 0Kk jon ok 1 /2n+10X 35 11 jon1 X3y 1 jomt joyr jon (7)

2" —1

= Z (E [5X11/2",2k+1/2"+1}>2 (E [5X21k+1/2n+1,k+1/2nD2

by independence of increments, only j = k terms remain.

2 =1 2”—1
Z 277171 . 2777,71 Z 9N oy QTN
k=0
So,
L = Ins1l|p2) < C27"72

Now, suppose X' = X? = X, then we expect fot X dX, = 1X7.
“Proof.” IBP

t ¢ t
1
/ XodX, = X}~ / X,dX, = / X.dX, = SX? O
0 0 0 2
Repeat the partition argument:

> X6Xey, Ellal= D E[XJE[X.,] =0

[s,t]ea [s,]€A
since X, and 6X,, are independent. However, E [%XE] = %tz. In reality, in L?(£2) limit,

X2 ¢t
lim [ =2t — 2
|A|—0 2 2

Conclusion: Stochastic integral does not satisfy IBP, Chain Rule, Product Rule, etc. In classical calculus,
quadratic size increments go to 0, but for BM quadratic size increments go to dt
What, instead of the left endpoint, we take the midpoint?

INA: Z Xs+t/26Xs,t
[s,t]eA

~ 2

Ia also has limit % This is the Stratonovich integral fg X, 0dX,.
Takeaways
1. There might not be an analytically unique choice of solution

2. The iterated integrals fot XidX! are important

2 Rough Paths

Moving forward, we are concerned with the following type of problem which we name a Rough Differential
FEquation (RDE)

dY; = f(Yy)d X
YYo=y

(RDE) { (8)

where X € C* for 1/3 < o < 1/2.

We can express Y; as integral, Y; = y+ fo Y5)d X (we always assume f € C°°). Taking a small interval,
we can approximate this integral

However, this error term is not better than linear for o < 1/2 since f(Y;) € C* and X € C*.
Taylor expand f:

/:f(yr)dXT =f(Ys)5XS,t+/: / Df(Y,)dY,dX, 9)
= X+ [ / DY) (V)X X, (10)
= f(Y.)dX,s + DF(Y. //dX dx, +// (fDf)(Y,) — (FDF)(Ys)]dX,dX,
(11)
= f(Y)0Xs4 + Df(Y. /6X”dX +// (fDF)(Y,) — (FDf)(Y,)]dX,dX, (12)
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where the last error term is < [t — s[3®. This gives a new boundary a > 1/3, but lets us address

1/3 < a <1/2. That is, for « > 1/3, up to o(|t — s]|),
t
[ FYAX, = FOIX. + FYIDFY) R
S
where X, ; = f; 0Xsr ®dX,. **Remember these are tensors**
We can define a lift & from X € C* to (X,X) € €% the rough path space that is
e nonunique
e often requires probability
e universal, i.e. independent of function f or initial condition y

From this lift .Z we can define a map S : €% — C® given by (X,X) — Y that is

e unique

e continuous with respect to the right metric (we cannot expect it to be continuous in C%)

We can repeat this procedure to lower the threshold of viable o regularity, but it becomes more compli-
cated with each new layer as we need to understand what it means to integral X against X in the next step

for example. We will generally take 1/3 < o < 1/2.

2.1 White Noise

Definition 2.1 (White Noise). ¢ is random distribution (in the analysis sense) that is a centered Gaussian

such that

m@@@wnszmwm.

2.1.1 Negative Holder Continuity

We can’t use the same method to measure regularity as for positive Holder spaces. |f(z) — f(y)] S |z —y| =@
doesn’t makes sense since as x —y gets small, |[z—y|~* blows up. So, we instead measure how the distribution

behave against scaled test functions. Let oy = A~%p(xA~1). If f is a function,

(fopr) =3 [ £@te/N) do = [ fO)ola) da,

For nice functions, this smooths them—for negative regularity, blow up. Thus, if f € C~¢, a > 0,

(ool S AT Ifll—a = sup sup A*[(f, ox)].
peEB0<AL1

So, for white noise,
E 1= 2 gy = N? di = (|2
e o) = [ oa@? de = 537 [ ola/n)? do = 5llol
Thus, (€, p,) ~ A~%? so regularity of £ is a bit worse than —d/2, £ € C~4/?~,

2.1.2 Stochastic PDE examples

1. Stochastic Heat Equation

{atu: Au+€&

¢
u(t,x) = ® xug +/ D, x&(s,) ds
ult=o0 = ug 0

If we take d =1,
ou=0u+¢=Pu=¢ P=0,—A
We think of this instead as a parabolic operator, to get parabolic regularity scale
Patz) = AP (AP A )

SO
—3/2— —3/2—
(&, o) SAT = ¢ceCy™

meaning u € 0573/27 = C;/% = 02/476’;/27. So, fg D, x&(s,-) ds is a function, but we still need

to think about it in the weak sense.

1_dy_ (1_d)_
In general,uGC’t(2 0 C;S;l 2
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2. ”Burgers-like equation”

out = 0%u' + g(u)dpu’ + &', i=1,2,...,n (g smooth) (13)

= — /udgp /u82 / w)Opup + (€, @) (14)

Why can’t we define [ fdg = [ fg’ dt where ¢’ is the distributional derivative?

We usually need f € C° to do this. However, we can do it if f € C® and ¢’ € C?~! so long as
a+pg>1

Note: €™ = B is a Besov space.

¢ is white noise on R x (0,00) € 053/27 = 0;3/476';3/2 so we expect u’ € 01/27 = 03/470;/27.
Note that C;/ 7 is the same regularity as a BM.

- What about g(u)9,u'? In general, we can’t think of g(u)d,u = 9,[G(u)]

g : R” — R™ smooth, then g(u) € C’%/Z* and O,u’ € C;l/% so we're just barely out of the regime
where we can do [ fg’ via distributions. (!!)

- Idea: cancel out singular part of equation: the white noise £°.

¥ =0

t=0

We want to decompose u into [rough] + [less rough]. Let u = v* + ¢ where
Opvi = Opav’ + g(v+ 1) 050" + g(v + 1) 01!

We think v should be more regular.
Recall: fot frdg, € C’tﬂ where g € C’tB Then, g(v + )09 € C;l/Z so we expect v € Cy /2= Thus,
g(v + )0,v" makes sense as a function.

- Let ¢ € C°(R) and consider [, g(v + ¥)0,1pp dz. We can’t do IBP since we will get 8,1).

y+h
/ 90+ 19)2utb ~ g(0(y) + V(1)) 5y y 109 () (15)
y o
= G(y,v(y))0Vy y+n +/ (G(z,¢(x)) — Gy, (y))] deyp(z) (16)
y+h T T
— Gobyen+ [ [ [ 10600 de+ [ 00G) (2 6(2) dev(e) | dow(e)
y y y a7
y+h z y+h x
— Go + /y /y .G (2, ) dzdaip(z) + /y /y 095G (2, 1) dev(2)das(x)
bounded ~O(h~1)
~O(h3/2) acceptable error
(18)
y+h
— (0,8)(y, ¥ / / d2p(2) daip(z) + o(h) (19)

where G(z,%(x)) = g(v(z) + ¥(z))p(z) € C So, we need to make sense of
y+h x y+h
v, = dzy(z) dxy(z) = Pt ) — (¢, dzypd (t, ).
o= [ [ o) dovie) = [T @) i) dev e

2.2 Lift to the space of Rough Paths

Let X : [0,T] — V =R™ (or any separable Banach space in most cases). We want to define what
t
Xs,t = / 5Xs,7' ® dX7

means. We think of X ; = I(d(X,.)) where f — I :(f) = fst frdX, We require that I, ; satisfy the following:
1. I, is linear
2. I; (1) =X
3. If s<t<w, Iy = Is + Ijy,. This implies

Xsu = su(aXs,~) = s,t((s(Xs,~) + Itu(6Xs,~)
=Xs¢+ L1, (0 X5 +0X,.)
= Xs,t + Xt,u + 5Xs,t ® 6Xt,u (20)
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Define X such that Chen’s relation (20) hold. Define
AL ={(s1,...,8,) €[0,T)" 151 <---<s,} = AL =[0,T], A2 C[0,T> ={s<t}, Al ={s<t<u},...
So we can think of § as C(AL) LA C(A2) LA C(A3.) This sequence is short and ezact.
5% =0, 0As1 =0= A, = 0F,, for some F

d eats functions of (s,t) and spits out functions of (s, ¢, u). In general, takes n variable functions and returns
n + 1 variable functions.
X eC“, % <a< % “Generic” Holder paths should be “self-similar”. Xy; — X5 ~ A*0X,

Xosat = //\/\t(Xr —Xos) ®dX, (let r=\q) (21)
~) / Xy — Xne) @ dXag (22)
~ A /t(Xq — X,)dX, since X € C* (23)
~ AN\ / t(Xq — X;)dX, since dX € C*7! (24)
= A%0X, s (25)

So, we want X to be twice a regular as X.

Definition 2.2. Let £ < o < 1. Then (X,X) is an a-Holder rough path if X : AL, = V and X : A2, » V@V
satisfy

1. Xy — Xyt — Xy = 0X, ¢ ® Xy o, Chen’s relation

X,— X, Koot
2. [X]a = Sup(s’t)eA% w < oo and ||X||C2° = Sup(s,t)eA% m < o0

This says that X, ; is small when |t — s is small.
Note: C2“ is used instead of C?* because X is a 2 variable function and C?® sounds like X is C?¢ in each
variable.

Proposition 2.1. X € C2*(A2%)

Proof.
Xty =Kot = K, + 60X 10X, S|t — to]?Y + Oty — to|®

Similarly for sq, so O

e Example 1: If X € C*(AL;V), and we define X, ; = fst 6X.,X),dr , then (X,X) € C*([0,T);V) is a
rough path.

o Evample 2: Let X = 0. Let Ac V@V (A€ R™®R™) then (0, (t — s)A) € CY/2([0,T],V). That
is X, = (t — s)A We'll see that X corresponds to areas traced out by curves Ex 3: Brownian sample
paths B € C* V a < 1/2 a.s. Define IB%g’t = f: 0B, s ® dB, = \IIDiImO > 0By, 0By, 4., this is the Ito

° —

integral. Then (B,B!) € C*V a < 1/2

i+1

Proposition 2.2. There exists a (nonunique) map € : C*(AL) — C?**(A%), X ~ X such that (X,eX) €
C® This is called the Lyons-Victoir Extension

2.3 Topology
We define the following metrix on the space of rough paths, €,

pa(X,Y) = [X = Y]a + [IX = Y|c2e

We want p(X,Y) =0 = X =Y so enforce X = 0. Then (¢, p,) is a complete metric space. We define
the "norm”
X, X[l = [X]oa + VIIX]|c2e

Note: the square root is for “homogeneity”.
Note : € is not a linear space and this “norm” does not satisfy the triangle inequality.
Define §y : €% — €“, A > 0 by
(X,X) = (AX, \?X)

So, [[[0x (X, X)[lg= = Al[(X, X)[| &=
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2.3.1 Smooth Approximations

Note : C! is not dense in C®, C® is not separable.
CCY

Define the C® norm by ||X||a = [|X||oc + [X]a or Xo + [X]a. Then C* > C§ := C1~ X € C§ iff
p‘i’::‘il —0as |t—s|—0.

Ezample: X; =t* € C*but t* ¢ C§ V 8> a: CP C C§ C C* (this inclusion is continuous)

If X,, = X uniformly and [ n]ﬁ < C, then || X, = X|[la =0V a<f

Ezample: BM € C* as. V a < 3. Thus, BM € C§ a.s. V o < 1/2 In fact, 3681/2 Y p < co. (sharp: p
cannot be increased and oo cannot be lowered)

Question: Given (X,X) € €, does there exists X" € C'([0,T],V) such that if X7, := fst 0XE, ®@dX),
then po ((X™,X™), (X, X)) — 07 Or if not, do we at least have

[1X7 = Xoo + [[X" = X]|oo = 0

and sup,, |||(X, X)|||ge < 00?
Answer: In general, no.
Let X smooth.

t t
X = [ 06 - XDaxg = (6 - XD - X)) - [ (] - xpax;

%
r]:‘hllS7 Sym(Xs,t) = %5X57t & 6Xs,t

Recall, A = A+TAT + ’4*27‘“ decomposition into symmetric and antisymmetric components.
Antisymmetric component has something to do with the area, think A = % [ xdy — yda

Definition 2.3. % <a< %, (X,X) € ¥“ is a geometric a—Holder Rough Path if Sym(X, ;) = %5Xs,t®5Xs7t
holds. We say (X, X) € €.

That is Sym(X,) is determined by X. However, antisymmetric part has freedom.

Example 2.1. (Geometric rough path as limits of smooth approximations)
X = an~'/?(cos(27mnt), sin(27nt)), Xy = fSt(X}I — X")® X dr. Then

2
n wn unlformly (67 0 1 - 1/2
(X", X") (0, 5 [_1 0} (t s)> €%

Let X = (X,X). Since our goal is dY = f(Y)dX, consider Y™ = f(Y")X". Then if X" — X. Then
Y™ —» Y where dY = f(Y)dX

Example 2.2. Let f: R — R2 x — (fi(2), f2(x)).

Y, =Y, = fi(Ye) - 6X1, + fo(Ys) - 0X2, + tr K}Eg 2@ (V)X t] + o(t — s)

Increments of the base path are zero (7)

o2
Y, -Y, = 7{f1,f2}(ys)

where {f1, fo} = f1.f5— fof1 is the Poisson bracket. We can choose paths X™ that go to zero but their effects
do not go to zero. If flows f1, fo do not commute, then effects are nontrivial

2.4 Brownian motion as a rough path

2
Loosely, E[(B; — Bs)?| =m(t —s) - E [(ftsﬁz) } =m, so ~ 1/2 Holder regular.

P
In general, E [(ﬁ) } = Cp.
/ /[|Bt r dsdt // [| Bt — Bs|P] dsdt
Wap = = — E Wap -
0,7)2 |t — s |t — s jt—sler |t —s|
t — g|p/2
C' il e ds =0, | [ 1t — sPG) " atds
‘ap-&-l

p(3—a)—1>-1— a<1/2. Thus, [Blwer < 0o (@ <1/2, p < o0). WP C co v (a > 1/p for large
enough p). So if f < 1/2, choose p such that o = 8 —&—% <1/2s0 Be WP C OF,

2.5

We want to move from norm defined by integrals to norm defined by sup.

Theorem 2.1. (Kolmogorov Continuity Criterion) Let (2, F,P) be a probabilituy space and (F,d) a com-
plete metric space. Let X : Q — C([0,1], E) be measurable and satisfy, for some C' > 0, p > 1, 8 € (0,1),

B> 1/p. E[d(Xs, X:)P] < CP|t — s ¥ 1,5 € [0,1] (Sups o] HWMX“ < C).
\ Lp(Q)
1
ThenV a < 8 — %, E [(SUPs,te[o,u 7d(|§j’j|§t)> } < MC where M = M («, 8, p).
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Proof. Note that by continuity, it is sufficient to consider only dyadic ¢, s. Define K,, = maxg—o,...2n -1 d(Xp/2n, Xg41/27),
on_1 n
2
||K’I’L||g S Z ]E[d(Xk/Q?L’Xk+1/2TL)p] S 2”0172_”5? = sz_nﬂp_l. Let Dn = (%)kzo and D = UDn.
k=0
If we fix s,t € D, they are not necessarily adjacent dyadics, so we need to be careful.
Fix s,t € D and choose m € N such that 27™~! <t — s < 27™ and get the dyadic expansion of ¢ and

M M
s. We can write s = o + > 22 5, € {0,1} and t =52 — S £ ¢, € {0,1} and M is such that

2m on
n=m-+1 n=m-+1
s,t € Dyy.
Then
dXs, X1) _ ymt1a 3 (il o N
Trosp S AKXz Xiaor) +2 3 Koy | <2002 3T K,y
n=m-+1 n=m
d(Xs, X, ©
Im = sup M < g(m+la o Z K,
steD2-m-1<[t—s|<z—m [t —8[* Pt
() B-1/p) 2ite (B—1/p—a)
ma « —m(B—1/p e —m(B—1/p—a ‘
| Tm|lze < 272 Z: 2 < T o=(—1/p) C2 (summable)
[ee]
Add up all scales to get all s,t € D, so ||[X]aller = || sup,, Imllre < D [|Imllee < MC O
m=0

2.6 Tensor Algebra

TV)=RaVaeVeVaeV®3ag...— @2, Ven

Truncated: T (V) = R&@V@V@V. That is, if (a+V +A)@(b+w+B) = ab+(av+bw)+(v@w+aB+bA),
i.e. the three tensor vanishes.

T ={14+v+Alisagroup. (1+v+A) " =1-v—A+v®

Let X = (X,X) € %, then X; =1+ Xo, + Xo € TI(Q) path living in tensor algebra.

Chen’s relations become X; @ (X5) ™' =1+ 06X + X5t

Suppose X : [0,7] — V, X: A2 — V@V satisfies Chen’s relations. Define X;; = 140X, + X, ¢ Then
if s <t<u,

Xs,t & Xt,u =1+ 6Xs,t + 6Xt,u + Xs,t + Xt,u + 5Xst & 5Xtu
=1+4+6X,,+X,, (By Chen’s relations)
= Xs,u

Then taklng X = XO,tv XO,S & Xs,t = XO,t — X37t = X;l ® Xi.
We want a norm on this group. Define N(X) = max{|v|, \/2|A|}.

Lemma 2.1. (N is additive)

Proof.

N(X ®Y) = max{|v + w|,\/2|A + B+ v w|}.
v+ wl < [o] + Jw] < N(X) + N(Y)
V2|A+ B +v@w| < V2[A] + 2|B| + 2Jv||w| < /N(X)2+ N(Y)2 + N(X)N(Y)
= V(N(X) + N(Y))2 = N(X) + N(Y)

O
Define d(X,Y) =1 [N(X7'®Y) + N(Y ! ® X)| (now also symmetric) and (Tl(z)(V),d) is a complete

metric space.

Theorem 2.2. (X,X) € ¢*([0,T],V) e X, =1+6X, + X5, € Tl(z)(V) satisfies,
1. Xgy =Xt @ Xy, Vs <t <u
2. (Xo,t)tefo,r) € C([0,T1, (T1(2)(V)ad)

Let B be Brownian motion. Then E[|B; — B,|?] = Cplt —s|P/2¥p>1—-KCCB € C*Va<1/2—1/p.
We now write our motivating RDE as follows

dy = f(Y)dX

where X = (X, X) € .
We consider the example of the Brownian motion. We have previously show that B € €% V o < 1/2.
Heuristically, the lift we define

Bl = [ (5] - Bl

Then, we must consider 2 cases:
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(i) i = j That is, we would like to understand the iterated integral of the form

N-1

B,.dB, = li B, (B —By,)= lim I
/ ‘ 1m Z t; \Dt; tl) |Pl\ril>0 P
We would like the analogue of xzdxr understood as d (%) Then
B}, B? B} -B2 1
IP:Z 21+1 _%_7‘Bt1+1_Bti2 :% 1+1_
i=0 z:O
N-1
Define QP = Z (Bti+1 - Bti)2'
i=0
Lemma 2.2. Qp )t—sas|P|—>0
Proof.
N-1
QP - (t - 3) = [(Bti+1 - Btz‘,)Z - Z+1 - t Z Mt17t1+1
=0
= E[M,: =0 (by properties of BM)
E[M:,]=C(t—s)* (Young’s)
N-1
E[Qp — (t—s)|*] = Z E[(M;,,,+)?] (off-diagonal terms vanish since My, ;,,, independent)
i=0
N-1
=C Y (tiy1—t:)> <C(t—s)|P| —0.
i=0
O
So,

.t s (4 _ _ 2
=5 5 —5(t=9) ~ BB+ B;
(B~ By)* t-s

2 2

(ii) ¢ # j Let X,Y independent BM. Then we want to understand the iterated integral f; X,dY,. First
let’s consider £(f) = fooo frdY,. for some deterministic path, f: [0,00) — R.

M
First, consider a step function f. = > a;1s, ;) where s1 <t; <s2 <tz <.... Then
i=1

M
£)=>al(Vi, = Y.,) ~ N0, ]I f]72)
i=1

since

M M 00
=S @R[V — Ve )P = 3 a2t — s) = / £2 dr = ||1]2
=1 =1

Note: ¢ extends as an isometry from L?((0,00)) to L?(Q).

Considering our original integral, f: X,dY, since X,Y are independent, changes in X do not change
the behavior of Y. Let’s look at (Q,P(:|Fx)) so we treat X as “deterministic” or information that we
already know and take £x : L2((0,00)) — L%(Q). We can think of Q = Qx xQy and X (wy,ws) = X (w1)
and Y (wy,ws) = Y (wy). Then

/XdY Ex (1o X (1)) (ws) ( /\X (w1)] dr)

t p
/ X, — X, dY,

In particular,
t p/2
Fx| =C,E U 1X, — X,|? dr]

t
< C,E U |X, — X, [P dr (t— s)P/“]

C;/t(rs)p/er( s)P/2h = Cl(t — s)P
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For Brownian motion, we say that we have moments of all orders and
E[|Bs|P] < cplt —sP/2V0<s<t<T

SO
E[d(Bs,B:)?] < Cplt —sP/2V0<s<t<T.

So, by Kolmogorov Continuity Criterion, ¥V o < 1/2, B € C*([0,T], Tl(z) (R™)) < (B,B) € €*([0,T)).
Choose o < 1/2 and then choose p large enough such that o + % < %
Note: B is not a geometric rough path, we cannot take smooth approximations and expect to converge.

Example 2.3. Let m = 1, % < a< %, X € C*. Define X;; = %(Xt — X,)? (in this case this is the

only way to lift to a geometric rough path). Consider our RDE, dY = f(Y)dX and we want to know that
-Y, = f f(¥,)dX, means.

Yo =Vim f(Yo)(Xe = Xo) + [(f - VISI(YS) : Xse + o[t = 5]) = As e + o[t — 5])

3 Rough Integration

The Sewing Lemma is how we make this new theory of integration rigorous. It is as follows:

Lemma 3.1. (Sewing Integration Lemma) Fix 0 < a < 1 < 7. Then 3 linear maps Z : C(A2) — C(AL)
and R : C(A%) — C(AZ) such that A € C(A%). (Let I; = Z(A); and Rsy = R(S)s4)

1. Iy =0 and 6I, s = As+ + Rs; (Therefore, we need only construct Z or R)

2.
s, |0As,tul
(s,t)€EAZ, It —s| (s,tu)EAS, lu —s|7
5 oI A 6A
sup | s,t|a sa,’y sup | s,t|a + T»yfa | s,t,u|
(s,syeaz [t — s (s.)eaz [t — s (stuyens, [u—s[7
Remark 3.1. ® 0A, ., = “how not additive A is” .. the remainder is determined by how not additive

A is. In fact taking ¢ of both sides of (i), we get 0 = JA+ IR — dR = —J6A

6Ist—/ Arrer'r— hm Z Auv

[u,v]epP
5Is,t = Z 5Iu,v = Z Au v + Z Ru v
[u,v]eP [u,v] [u,0]

| S —

converges to something  converges to 0
Example 3.1. f€C?®, g CP, s <t < u, Ast = fs09s.
(SAs,t,u = fs(gu - gs) - fs(gt - gs) - ft(gu - gt)
= [s(9u — 9s — 9t + 9s) — fr(gu — gt)

= (gu - gt)(fs - ft) = _5fs,t59t,u
|5As7t,u| < [ﬂa[ghﬂu - 5|a+ﬁ

Can take v = o+ 8 for a« + 3 > 1 — criterion for Young’s integration.

0As t,u
PAsinl o0 where 6Aq 10 = Agu — At — Ap.

fu—s|"

Lemma 3.2. Assume v >1, A: AZ = W, [64], = sup

s<t<u

Define Z(A)s . = > Ay, where P partition of [s,¢]. Then
[u,v]eP

M{(A) = sup |As¢ = Tp(A)sl Sy [BAl [t = 5]

Proof. Let P be a partition of [s,t] and let #P = number of subintervals in P. Jv € P\{s,t} s.t. if
v_ < v < vy are adjacent points in P, then |vy —v_| < C|t — s|. If not, then

21t —s| > Z vy —ov_| > Clt —s|- (#P —1)
—_———

vEP\{s,t} # of points in P\{s, t}

which yields a contradiction if C' =
Let P = P\{v}. Then

#ZP—1°

Zp(A)st = L(A)stl = [Av_ oy = Ao v = Avor | = 1040wy | S [0A]y |4 — 0|7 < (#P oK [0A] [t = s|".
Proceeding inductively until reach trivial partition.
#P-1
[Ase — Ip(A)se] < 2V[6 ALt — 5|7 Z o = 2MmoAllt - sl
O

10
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Proof of Sewing Lemma

Proof. Let P and P be two partitions of [s,]. Assume WLOG that P C P. Then

Zp(A)st = Zp(A)sl = Y [Aw = Tp(Dunl £ Y M(A)uw Sy A, D o —ul? < [FA] PPt — |
[u,v]€P [u,v]€P [u,v]eP
so sequence {Zp} is Cauchy. Thus, 3 a limit |Jlﬂi\mOIP(A)St =T(A)st.
—
Taking | P| — 0,
| Zp(A)st — Z(A)st| Sy (DALt = sl P!

Taking the coarsest partition P = {s,t},

[Ast = Z(A)st| Sy [6A]4 ]t — 5[

That is 5I(A) =0 so if R(A)bt = I(A)ét — Ast = (5R(A)5t = _6Ast~

So, we get [R(A)]y Sy [64],

Claim: If s <t < u, then Z(A)sy, — Z(A)st + Z(A)t (61(A)st0, = 0).

Let P be a partition of [s,u] where ¢ € P as an interior point. Then P = P, U P, where P is a partition
of [s,t] and P, is a partition of [¢,u]. Then

I(A)su = IP1 (A)st + IPg (A)tu

Then |Py|,|P2] = 0< |P| — 0,50 I(A); :=Z(A)os = Z(A)st = 0I(A) s
[Note: Heuristically, I(A); = f()t Ay ryar and 01(A) g = f: Arrtdr]
Regularity of Z(A);. We have that 6Z(A)s = Ast + R(A)st. Then

|5I(A)st| < ‘Ast‘ ‘R(A)st|

L e e Ut
< [Ala + T7[R(A)])y
< [Ala + T70(54],

~Y

[t —s|” —a

Example 3.2.

Ast = [ ®dgst
= 6Astu = _6fst b2y 6gtu

t t
R(A)st = / frogr — fs0gst = / [fv" - fs} ® g,
SOR=-0A= 6fst & 6gtu

Example 3.3. (X,X) € €2, % <a <1 fsmooth.

/ F(X)dX, = f(X)6X 0 + / F(X,) — F(X)]dX,

t
= f(Xs)(SXst + Df(Xs)/ (Xr - Xs) ® er +R

Xst

Ast = f(Xs)(SXst + Df(Xs) : Xs,t
—

contraction of tensors: multiply and take trace

X = (X,X) € €*([0,T,V), 3 <a < 3, f:V = V at least C'. We want to makes sense of

JLF(X)dX, ~ fUXG)0XE, + Dy, f1(Xs) XY = Ay
[Note: This is not quite the same integral from the RDE dY, = f(Y,)dX,]

As,t,u = Asu - Ast - Atu
= _[f(Xt) - f(Xé)} 00X+ Df(Xs): Xsu — Df(Xs): Xst — Df(Xy): Xt
= _[f(Xt) - f(Xs)} . 5Xs,t + Df(Xs) : @gtu + 5Xst & 5Xt't£] - Df(Xt) : Xt,u
—_—
like 6 X4 ¢ from Chen’s relations
= _[f(Xt) - f(Xs) - Df(Xs) : (SXs,t} . 5Xt,u - [Df(Xt) - Df(Xs)] : Xt,u
SV flloo((XTa + [X]a[X]2a) lu — s>

Thus, we can apply the sewing lemma since 3o > 1. So,
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exists and

[t F(X,)dX,
e S llselXa A TS oo XK

and .
/ FOG)AXy — F(X)0Xon — DF(XS) s Xou| S [t — s[5

Can we say anything about the continuity of the map X — fo f(X,)dX,? (Stability)
Instead of directly comparing integrals, since €* is not a linear space, we compare germs A' and A2
which give us estimates on integrals. Let Ay, = AL, — A2 ;. Then

|5As,t,u| <

SIXY = X2, + X = X%y, VXY X? such that ||| X[+ ]]|X3]|| < R
|u — s|3

rough path metric

That is, locally Lipschitz with respect to this metric.
dY, = f(¥,)dX, — “increments of ¥ up to some multiplicative factor like increments of X”

Definition 3.1. Fix X = (X,X) € €%([0,T],V). (Y,Y’) € 2%([0,T],W) is called an X—controlled rough
R

path if Y € C*([0,T],W), Y’ € C*([0,T], W ® V), and R}, := §Y, s — Y/6 X, satisfied sup, Ti—size < 00
That is 0Ys;, = Y6 X, + Rf’t.
Example 3.4. Y; = f(X}), f smooth.
Y, =Y, = f(Xy) - f(Xy) = DF(X)0 X, + R,
where RY, < [t — s[** so (f(X),Df(X)) € Z%.
For fixed X, 2% is a linear space and a Banach space with
YY) la = [Yol + Y] + [V, Y)]a
where
(VY )]a = [Y]a +[R"]2a

[Note:
V]a < Y lloo[X]a + [R]2aT* < (I¥5] + [Y5]aT*)[X]a + [RY J2aT

C*x 9 ={(X,Y): X €€ Y € 7%} o
We can define a kind of “metric”. Given (Y,Y”) € Z% and (Y,Y’) € 75 define

d(Y,Y"), (V,Y) = [Y' = V']a + [R = R oo + [YoTo| + Y — V|

[Note: d((Y,Y"),(Y,Y") = 0 does not imply that (Y,Y”) and (Y,Y”) are not the same objects since they live

in different spaces.]
We are concerned with the integration of Y € 2% against X € €.

t t
/ Y,dX, ~ Yi6 Xy + / (Y, — Y,)dX,

t
=Y,6X,, +Y! / 6 X ord X,

N————
Xt

Theorem 3.1.

t
/ YedX, = lim Y [VudXuo + YiXu]
s [u,v]eP

and if Z, = [} Y;dX, and Z, = Y; then (Z,2') € 2%([0,T],W ® V) with estimates.
Proof. Define Ay = Y,0X++ Y/X ;. Then to apply sewing lemma, we need to

[As il < (I Moo [XTa + [V |oo K20 T) [t — 5|

6Astu = KCSXsu - Y'saXst - Yt(SXtu + 1/;Xsu - }/;Xst - }/t/Xtu
= _Ys<5Xsu - 5Xst) - Y;f(éxtu) + Y;‘I( Xsu - Xst ) - Y;:/Xtu
—_———
Xtu+0Xs: @0 X 10
= —0Y50 X4y = 5Yt;txtu\ + szl((sXst ® 6Xtu)
= _(5Yst - Y;I(SXst)aXtu - (Y;f/ - Y:q/)Xtu
—_———
RY,
= —RY,0X, — 6V, Xy,

12
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So,
[0A]30 < [RY |20[X]a + [Y][X]2a

3a > 1 so we can apply the sewing lemma. That is Z(A)g = f: Y,.dX, exists,
t
R(A)gt = T(A)yr — Ay = / YodX, — a6 Xar — V"Xt

[R(A)]?)a S [5A]3a7

1 t t
o | X —YisX = ¥R S (K (Kl (7))
S S
Zy—2Zs
[t—s|?*  |t—s|3

—~ = ——
67 = Y0 X + Y/Xg + R(A)s so we get a higher order estimation/expansion + remainder that is more
—_———

RZ,
regular. This makes sense intuitively that as you integrate you should gain regularity. [Z'], = [Y]a and
[R]2a < [V ||oc[X]2a + ([X]a + [Xl2a) (V. Y)]a T,

(2, 2)] Sar (Y] + [V, YD ([X]a + [X]2a)

(X,X) e ([0, T],V), (V,Y') € 7%.

t
82 = / Y, X, = ;illgo[ %P[Y&Xu,v + YiXu]

so, (2,2 e 9%,7Z' =Y.

Remark 3.2. 1. Wetook Y e W - Z ¢ WV = Z(V,W) “linear maps from V to W”, then
Z'e WRV)®V. So how is Z/ = Y? There exists a canonical inclusion W — (W @ V) ® V where
w — i(w)[v] = w®v. We could also take Y e W@V, Y e WRV)®V =>ZcW,Z =Y cWaV
and don’t have to think about inclusion.

2. Recall if (X, X), (X,X) € €%([0,T],V), then X = X + 0F for some F € C?*([0,T],V ® V) by Chen’s

relations.

IEYY)e2¢ < (YY) e 9% because they have the same base path. So, we could integrate against
X or X, but the integrals will be different.

t
YedX, = lim > [Vud Xy, + YKy
[u,v]€P

=1 Y6 X o +Y'Xpw + Y/ OF,,
i S + Y Xy + Y 0F )
[u,v]eP

t t
— [ vax, s [ viap,
S S

correction term

[Note: [Y’dF makes sense since Y’ € C* and F € C 2@ 50 we can apply the sewing lemma.|

3.1 Stability Estimates for Rough Integration
(X,X),(X,X) €4, (Y,Y') € 2%,(Y,Y') € 2%. Then Z = [YdX and Z = [ YdX. We'd like to estimate

a kind of “distance” between Z and Z.

(2,2'),(2,Z"))a =2’ — Z')a + [R? — R%]54

[Note: even if X = X, Z=27+ c1+ X so Z' = Z' + co, then [Z' — Z’]Q =0and 02y = 025 + 20X 5 =
(Z' + )0 X st + R%, so [R? — R?]5, = 0. The pseudonorm will measure distance of 0, i.e. will not separate]

Theorem 3.2. If M > 0 and [X]a, [X]2a, [X]a» [X]2a; (YY), [(V, Y)]a, |Yol, [Yg| < M. Then
(2, 2)),(Z, 20 Sit pa(X,K) + Y] = Yo | + [(V,Y), (V,V)|T°

and
12— Z)a Sr [Yo = Yol + pa(X,X) + Vg = Yo | + (Y, Y), (Y, Y))| T

13
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Proof. Z' =Y, Z' =Y
2" - Z/]a =Y - Y/]a
<Y =Yool X]a + [V [|oo[X = X]a + [RY = R']q
———
[RyfR?]zaTO‘

S Vg = Vg1 + [V = V1T + pa(X,X) + [RY — RV ]5aT®
=Yg = Y|+ [(V,Y), (Y, V)T + pa(X,X)

6Zst - Ys(sXst + Y:q/Xst + R(A)St
§Zst = f/rsaXst + i/sXst + R(A)st
The difference of the first two terms will be as above,

[R” = R7Joa S IV = ¥[Joc + [X = Koo + [R(A = A)l2a
—_———

ST R(A=A)|30 ST[6A—5A]34

5Astu = *Rg(thu - 5}/;Itxtu
5Astu = _Rié)ztu - 6}75/15Xtu

Taking the difference and proceeding as above. O

3.2 Existence and uniqueness
dY; = f(Yt)dXt7Y0 =yeW, Xee*([0,T,V), fW—=>WeV

FOG) = F(Ya) = DF(Ya)0Va + / D(rY; + (1 — 7)Ys) — Df(Y,)dr6Ys = Df(Y2)Y!6 X+ Df (Vo) RY, + RIY

R}

IRIY| < |IDf]|sol0Yut)? = (F(Y), F(Y)) € 25(10,T),W @ V) where f(Y) = Df(Y)Y'. Note: we need
Y’ € C* since Df(Y) € C* since Df is Lipschitz.

We say (Y,Y') € 9% solves RDE if Yy = y and 0Yy; = fst f¥)dX, ¥V s,t. (Y,Y') solves RDE = Y’ =
f(Y) (looks like an ODE expect prime is with respect to X)

Can we prove existence and uniqueness?

Theorem 3.3. If f € CZ, then 3 a solution. If f € C3, then the solution is unique.

We want apriori estimates for [Y], (in terms of X):

6Yst = f( )6Xst + RY
f( )5Xst + f( ) st + R(A)st

Note also,

Ast = f(Ys)(sXst + f(}/;)/x t
- _Rgt(Y)dXtu - 5f(Y)stXtu

Goal: Choose h and estimate [RY ], = sup { |t‘f5|lea =8| < h}
RY, = f(Y2)' Xy + R(A) ot
[RY Joan S 1Y ]1oo [Xlza + [R(A)]ganh
< [X2a + [04]30,1A"
S Koo + (B aan[X]a + [£ (V) ]an[X]2a) 2
<[t = sl** (Y130 + [BY 2a.n)

Take he[||X]|| < 1/2.

1[Y]a W)+ XI5 Y an S (Koo + [Y]2

1
[RY |aan < i[RY]m,h + C(||X]|2a + > S

Since 6Yy; = F(Y,)0 X4 + RY,, then we can close the loop.

10Yse| S ([X]a + ha[RY]2a,h)|t — 5|
WY o < h¥[X]a + b2 (Koo + [Y]24)

14
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Note: Suppose Nh < |t — s| < (N + 1)h. Then

0Vl _ (N + DY anh?
=5l = (VR

SN [Y]an

11—«
S0 [Y}a;[O,T] ,S %[Y]a,h;[O,T]
We required that h[||X[||a 1= [Y]an S [Y]2 0 + 1[I X]|la We want to specify h is a clever way so

~

we can estimate in terms of X since we are trying to bound [Y],
Multiplying by A® and by C

=h*[Y]an < C(h*[Y]an)? + Ch*||IX]||a
= Ch[Y]an < (Ch[Y]an)® + C?h[|X]|a
————— —_———
Pn An

=vn < Pi 4+ A
When h — 0, vy, gets small and can absorb 7. We also know that A;, — 0.
We take A, < 1/4 since ¢y, < (207 + 1/2) = ¢} + 1/4 to give actual conditions on v,. So, ¥4 =
1 + ,/7 — Ap, then either ¢y, > ¢ > 1/2 or ¢, < ¢_ < 2);, We want to specify Aj, so such a jump cannot

occur before Aj,.
Take hg such that >‘ho 100 Claim: ¢y, < 9¥_ V h < hg.
If Ap < 100,¢ S . We actually claim 1, < 2 hm s which would rule a jump by a factor of 25.

Y, - Y, Y: - Y, Y, - Y, AN A\
hc’g < pe { i | + | | ] < () 2[Y]ans2 = hY]an <2 (2> Y]a.n/2

[t —s|* — 200t —m|®  2%|s — m|® 2

P < 20 <2 %in(l) P _s since 1 is increasing.
—
So, [Yla.n S [IIX[[a- If

o 1
h |HXH|(x =c= [Y]a;[O,T] ST hlj[y]ah [0,7] /\J hi- a|||X|Ha

Then, we get existence for RDE for f € C%! by Euler scheme.

Uniqueness: Z; =y + fo Y,)dX solution to RDE & (K YN8 (Z, f(Y))

proof (sketch): Set up fixed pomt problem. First, take o such that 1/3 < o/ < a <1/2. Look for fixed
point of m on 2%. (Note if X € €, then X € €*’) Then, we can show that (Y,Y’) € 2%.

|0V |

|t = s|*

|6Xst| |R§f

!
t— 20" —«

=¥l

where 1/20 < o < a. Next, By = {(Y,Y') € 2% : Yo = 4,Y] = f(),[(Y,Y")]a < 1} Need to if T is
sufficiently small that m : By — B and m is a contraction mapping.

3.3 Itd v.s. Stratonovich integrals

1<a<§,Xe6 feC)? 6> 122 dy = f(Y)dX = 3! solution (Y, f(Y)) € Di. Also, stability:
X, X,y, 9= (Y, f(Y)), (Y, f(Y)) solutions.

YV~ Yo+ [RY = R |20 S 1y — 3] + pa(X,X)

Recall, a geometric rough path (X,X) € ;" is a rough path such that Sym(X;;) = %6Xs,t ® 00Xt =
ft(Xi — XHdXxj —|— ft X7 — X7)dX! (integration by parts formula) < 3 (X)) € C* such that X" — X
uniformly and Xs ;= f xm X(n)) ®dX™ — X ¢ uniformly and sup,, |||(X ™), XM™)|||, < co.

These properties are not clear, in fact any random approximation will not have the second property.

Ex: V = R? Xt(") = —tz(cos(2mnt),sin(27nt)). Then X™ — 0 and Xg? % 01 é (t —s) but

X=(0,X¢es"” .

If f:R—=R@R2 Y™ = f(y(™). X then by stability, Y ") — Y that solves dY = f(Y)dX. Then
. 2 2
Y =5{fi, 2}y) = S (fifs — f2f1)(y)-

Brownian Motion: We define B., = fst(Br — B;) ® dB, (as L? limits of Riemann sums). Let B! =
(B,B") € €. dY = f(y)dB' & dY = f(y)dB. Note B’ ¢ € since

(El \iJ +B 7]1) — {;6th53§t 27&]

Sym(B!,) = .
(B LOBLY - 5 imj

1
2
So, fails to be geometric but by another smooth path.

Define IB%SSt =B, + +3(t—s)Id. Then, B® = (B,B%) € ;' since 5 1(t—s)Id smooth and we have integration

N
by parts. It turns out that B, = hm Z (B(t,4ti41)/2 — Bs) ® 0By, ., (Stratonovich). So, we can see that

P|—0,=1
the intermediate point does matter unlike Riemann integration.

dY = f(Y)dB; < dY = f(Y)odB = f(Y)-dB + %f(Y) -Df(Y)dt

difference between It6 and Stratonovich

15
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Y from It6 integral form is a martingale. Y from Stratonovich integral form is not a martingale, E[Y; ;] =
tgs but we gain nice calculus facts like integration by parts and the chain rule, and we know that we can
approximate by smooth path since geometric rough path.

Wang-Zakai: What is the correct smooth approximation to get (B,B) € €*? If (B™) is either B * P1/n
where p a smooth mollifier, approximation of identity or if take piecewise linear interpolation of stepsize 1/n
and B™ = [§B™ @ §B™, then (B™ B(M™) — (B,B%) in C*.

There are other lifts that give geometric rough paths so there are other ways to approximate that will
converge to these other geometric rough paths.

4 Gaussian Measure Theory

e on R: 2
p(dr) = m eXp (—‘2%) dz >0
do c=0

density for Gaussian with mean 0 and variance o < [ |z[?dy = o2

e on R%: A Borel probability measure y is a (centered) Gaussian measure if £*p is a centered Gaussian
measure on R V £ : R? — R linear where £*ji(A) = pu(¢~1(A)) refers the pushforward of y through £.
In this case, we cannot speak about a single variance. Instead, we define a covariance matrix,

if (X1,...,Xg4) has distribution x. Equivalently, for ¢,/ € R%, ©¢- 0 = J(e- 2)(0 - z)p(dz). Tt turns out
that ¥ > 0, symmetric, and if ¥ is invertible, then

1

— L1
wu(dz) = o) 2ot ()12 exp ( 52 x x) dx

e on Banach spaces:

— Brownian Motion, B(w) : [0,00) — RY, B(w) € C([0,00),R%). Then for A € C([0,T],R?),
u(A) = P[B(w) € A] is a Gaussian measure.

— White noise, ¢ : R? — R random distribution, E[¢(2)é(y)] = 6(z —y) & € : OF(RY) — R,
E[(&, ) (& ¥)] = [ p(z)Y(z) do gives Gaussian measure on some space of distributions.

€ L2(?%) < L2(Q). Let (&) be a sequence of independent, centered, variance 1, Gaussians
on R. That is, some orthonormal basis for a closed subspace of L2(9). (e*®),cza orthonormal
basis of L*(I1%). & = 3", &e™® is not summable with probability 1. However, £ € H~*(II%) =

{T e D'(11%) : Y % < oo} for some s > 0. That is (%) € (2(79).

& B 1
. [Z s fk?)s] =2 Ty <

for s > d/2. Then L?(I1%) ¢ H~*(l1%), s > d/2. Thus, white noise is a Gaussian measure in such
H—3(T14).
won L2(IT%) gives most (all?) information about u supported on H~*(II¢), a much larger space.

Let B be a separable Banach space, p a Borel probability measure is Gaussian if £*u is Gaussian on
R Y ¢ € B*. We can think of mean, m(¢) = [(z)u(dx),~m € B**. We actually get m € B.

B separable Banach space, P(BB) = Borel probability measures
Recall, p € P(B) is a (centered) Gaussian < *p is a (centered) Gaussian in R for all £ € B*.

Remark 4.1. If y,v € P(B) and £*u = £*v V £ € B*, then p = v.

We can define a canonical random variable with measure p that we can identify with p.

Let Q = B, F = Borel sets P = p. Then Q 3 w — X(w) = w € B is an F—measurable random variable
nad P(X € A) = u(A) by construction.

Then, p is a Gaussian measure < ¢(X) is a centered Gaussian on RV ¢ € B*.

Definition 4.1. The covariance operator ¥, : B* x B* — R where (£,€) — [£(x)l(z)u(dz). This is
well-defined since [ €(x)?p(dx) = [, y*(¢*p)(dy) < oo since p is Gaussian. This operator is finite, bilinear,
symmetric, and nonnegative.

Theorem 4.1. (Fernique’s theorem) 3 universal constant o > 0 such that u(||z|| > ¢) < exp (%ﬁ) where

M = [||z||u(dx) V t > M. (In fact, all moments can be estimated in terms of the first moment.)

Proof. Let 0 < 7 < t. Then

t—rT1

plllell > Opdlell <) = (p e p) )l > 1 x {{lz]] <7}) = p(Bapadllzl] > ¢} x {[Jz]] < 7}) < p(l]] > 7

16
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where we use that u is rotationally invariant to rotate the set {||x|| > t} x {||z|| < 7} by 7/4 and estimate
this set in {||z|| < 557}. Let ¢ = p(||z|| < 7). Then by a change of variables,

1 || > s

Ll > vas 1) < L= )

& C

Let so = 7 and s,41 = V25, + 7 and define y, = 2pu(||z|| > s,,). Then the above inequality says y,11 <
v2 =y <3 = (Lp(z|| < 7'))2 = (1—2‘:)2 < 372" since we can take ¢ to be as close to 1 as we like since
u(||z|| £ 7) = 1 as 7 — oo. Thus, choose T such that ¢ > 2.

(vay+t -1

Sp=———-T. S, < com?r

V2 -1

Now, take t <7 — 5, <t < Sp+1- Then
p(llzl] > 1) < p(||z]] > sn) < 372" = e Clon)*/7% < o= C% /7

[So, [||z||n(dzx) < co. Applying Chebyshev (Markov), p(||z|| > 7) < &, Take 7 = 4M, so p(||z|| > 7) <
1/4. So, ¢ > 3] O

Corollary 4.1. (1) 3 constant ||3,,|| such that X, (¢,€) < ||X,[|[¢]]]|¢]]. Also, (2) ¥ : B* — B is continuous.
Proof. 1. £(x) < ||¢]|5-|x||5

2. ¥,(0) = /:M(x)u(dx) (well-defined b/c ||zl(x)|| < ||¢|
—_—

Bochner integral

z||% and ||z||% integrable since z is Gaus-

B*

sian.)

4.1 TIto integral
X e €*([0,T],V), % <a< %
1
Sym(Xst) = §5Xst ® 00X + By

where E;; € Sym(V ® V). For geometric rough paths, Eg = 0.
Claim: Est = 5731& =% — Vs & 5Estu = Esu - Est - Etu =0

1
6Estu = Sym(éXstu) — 6(5(5)( ® 6X)stu
0Xstw = 0Xst ® 0Xp,  (Chen’s relations)

1 1
Sym(éXstu) = §5X5t [ 6Xtu + §5Xtu X (SXSt

1 1
5(55)( ®0X) st = 5[5)(5“ QX gy — 0 X5t ® 6 X5t — 0 Xpu ® 6 X4y]

1
= 5[6Xst b2 5Xtu + 6Xtu ® 6Xst]

5Estu =0

v € C?*([0,T],Sym(V @ V))
“Chain Rule” Let (Y,Y’) € D%. We have defined previously, Z, = fg YidX,, (Z,2') € D% with
7' =Y. Recall also,
674 = Y0 X + Y!X e + o(|t — s3%)
Let f smooth. We want an expression for f(Z). We know that (f(Z), f(Z)) € D%, f(Z) = Df(2)Z' =
Df(Z)Y
An naive guess
df (Zi) = Df(Z)dZy = D f(Z)Y,dX,

is not correct, but does make sense as an integral since D f(Z;)Y; is a controlled rough path.

J(Z) = $(22) = DIZ) 7ot + 5D F(Z0)) 0700 © 67u0) + o]t = )

= Df(Z)Ye6X st + Df(Z)Y! Xt + [YID?f(Z,)Ya] : [0 X st @ 0 Xsi] +o(|t — 5[3%)

correction from guess
= Df(ZS‘)YS‘(;XSt + Df(Ze)Yg/X‘;t + [YqTsz(Zs)Ys] : [Sym(Xst) = 573t]
= Df(Zs)Ys6 X5t + [Df(ZS) + YSTDQf(ZS)YS]Xst - YsTsz(an/s(S’Yst
We can drop the Sym from Sym(Xy;) since YT D? f(Z)Y; is a symmetric matrix. If A is symmetric and B
is antisymmetric, tr(AB) = tr((AB)T) = tr(BT AT) = tr(ATBT) = —tr(AB) = 0.
Define Wy = df (Z,)Yy, W} = Df(Z,)Y] + Y D?f(Z;)Y;. This can be shown from W, = W!5X +
RY . Then
~—

Slt—sfe

F(Zi) = [(Zs) = Wb X + WXy = Y D?f(Z3)Y : 65t + o]t — s|**)

17
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Since Y D?f(Z,)Y, € C“ and v € C?*, we can define this as Young integral. Thus,

t t
(Z0) - 1(Z2) = / (W, W!)dX, — / YT D2F(Z,)Yody,

This is made rigorous by the sewing lemma.

Example 4.1. Consider the Brownian motion B with the It6 lift, B! = (B,B!). We know that Sym(B.,) =
25B5t ® 6 Bgt — —Id =y = 2Id. Thus, for (Y,Y’) € D§ and dZ; = Y; - dB; and f smooth, we have It6’s
formula

df (Z;) = Df(Z;)Y:dBy + %tr(Y;Tsz(Zt)Yt)dt

For dZ, = Y, o dB; Stratonovich lift, v = 0 so df(Zt) = Df(Zt)Y}dBt obeys the chain rule.

4.2 Gaussian measure
Example 4.2. Let B be a separable Hilbert space (B* = B).
Theorem 4.2.

Let B be a separable Hilbert space (B* = B).

o0

Definition 4.2. T : H — H, a continuous, linear operator is trace class if > (Te,,en)y < oo for some
n=1

orthonormal basis (e;,)

Theorem 4.3. i# : B — B is trace class.

Proof. Let (ey) be an orthonormal basis of B. Then

(S pem en) :/<x,en>2u(da§) =3 Sulensen) :/||x|\2u(da@) <o
n=1

by the monotone convergence theorem.
Further, given any nonnegative, symmetric, trace-class operator 7' : B — B, then 3 a centered Gaussian
measure p on B with T'= 3. O

In general, for B a separable Banach space, iu : B* — B is compact.

Example 4.3. Let B = C([0,7],R) with sup norm. Let x be the Wiener measure. Is p Gaussian? B* =
finite Borel measure on [0 T]. For instance, 6; € B* where §;(z) = x(t) are “evaluation measures”. In

general, {(x fo ) where z(s) is a Brownian motion path. If we approximate this integral by step
functions, 1t is clear that 1t is the sum of independent Gaussian random variables and this is true in the limit

as well. Let x € B.
5, (6,7) = / ((@)i(@)u(dz) = E / B(s)i(ds) / B(s)g(ds)]

// ((ds)0(dt) //s/\tﬁds (dt)

/B £(ds)
h’(t):;t[/sf ds+t/ f(s) ds| =tf(¢) /f ds —tf(t) /f

[Note: finite linear combinations of ¢ are dense in the space of measures]

Assume ¢(ds) = f(s)ds, Then

$,.(0)(t) = / w0z p(de)(t)

- / (s A 1)0(ds) = h(t)

4.3 Cameron-Martin Space

Define R R R
Hy=%,B")={heB:3h" B 2,(h)=h(e X, (h",{)=Lh)VIlcB}
Given h,h € 7:1,“ define (h, B>H” =X, (h*, h*) where Y,h* = h and Zﬂh* = h. Then we can define a norm
||h||’2H“ = <h’i7'>Hu = ?ugh*7h*)
Suppose X,h* = X ,h* = h. Then

Su(h* h7) = h*(h) = h*(E,h7) = S,(h*, h*) = h*(E,h7) = h* (h) = S,(h*, h*)
so the norm is well-defined.
Note: H,, need not be complete.

Let H,, be the completion of H,, under || - I, -
Claim: H, C B.
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Proof. Let h € 7:[w (We want control of B norm in terms of 7, norm)

Ihllz = sup  £(h)* = sup B,(Lh") < sup B,(66) S, (0", h*) < [[S,]]][A][F,
LeB,||4||=1 l1ef=1 l1efl=1 ‘W—’
Hy

O

p = centered Gaussian measure, ¥, : B* — B, H,, = ¥,,(B*) where for h € H,,, ||h||*> = £, (h*, h*) where
X,h* = h. [Note: We drop the ~ to differentiate between X, as a map and as a bilinear operator. This
should be clear from context.]

Remark 4.2. h — h* not uniquely defined. For example, p = do. Then ¥, = 0 and H, = {0} so
Yuht =0V h* e B

In general, if ¥,0 = Z#é then

/w — D)(@)Pude) = S, (6— 10— 1) = (€= (S, (0~ D) =0

Thus, we have an isometry from #,, < L?(B,u) where H,, > h + h* and Hh”%; = X, (h" h*) =

]| L2 (u)-
Define the reproducing kernel Hilbert Space R, = i(H,) C L?(B, 1) = space of square integrable random
variables. Recall, by letting B = Q, u =P, X(w) = w we can make p be the distribution of random variable.
Then ¢ € R, (¢ = ih) = ( is centered Gaussian with variance |[¢]|7.,) = [|hl[3,,-

Example 4.4. B = C([0,T],R), u = Wiener measure
Exercise: If f € L'([0,T]) C B*,S,f = h € B, then h(t) = fot [féT f(r) dr} ds. That is

—h"(t) = f(t) T T

h(0) =0 and ||hlf3,, = / f(t)h(t)dt = / |P/(t)|?dt

W(T) =0 0 0
= M, = {h absolutely continuous function with h(0) = 0 and b’ € L?}. H, = {h absolutely continuous
function with ~(0) —0,h’ € L> N BV} so H,, C H,
Proposition 4.1. If i, v are centered Gaussian measures on B and H,, = H, and ||h||, = ||h||, ¥ h € H,.
Then pu =v.
Proof. Since we already know that u and v are centered Gaussians, it suffices to show (*u = vV £ € B* =

it suffices to show that [ ¢(z)?u(dz) = [4(z)*v(dz). O

Let u be a centered Gaussian, h € B. Define T}, : B — B where y — y + h. Then we can consider the
pushforward, T} i, a measure on B. For example, B =R%, £, invertible < X, (¢,¢) > 0V ¢ # 0.
Then take f € C(R%) N L(u) so

[ 1@ = G [ S et as

1 —337 (@—hz—h
- (27)4/2det(X)1/2 /f(x)e 22 )dz
1 TR
— (27‘[’)d/2det(2)1/2 /f(aj)ez (/’L,Gb) 22 (’,h),u(dm)

= dT}p=exp (X7 (h,x) — 57 (h, h)) p(dx) so Tj p is absolutely continuous with respect to p.
z€B, heMt, —ilh)€R, C L*(B,u) that is “Xi(h) = h”

dTyp = exp | ih(z) — 3 ih(h) dp = exp(ih(x) — §||h‘|§-tﬂ)
Ji(h)? (@) p(dz)=IhlI3,,

Theorem 4.4. dim H,, = +oo. Then T} u is absolutely continuous with respect to u < h € H,,.

Proof. NTS T} 11 = exp (z(h)(:c) — 1|n| |%'iu) dp. We can do this by taking the Fourier transform and showing
that the Fourier transforms are the same. O

Covariance is a very natural inner product.
We could have proceeded as follows:

Fernique’s thm = B* C L*(B,u) = R, = B2 5 Hilbert space

where we identify functionals in B* by p—a.e. equivalence and HEH%Z(N) =3,(40).

Yy B = 7—~LM C B where again we take B* up to p—a.e. equivalence. X, extends to an isometry
Ry — H, and i : H,, — R, goes the other way.

Recall L?(u,B) is a collection of random variables. Hence, R, are random variables, in fact they are
Gaussian.
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Example 4.5. Let B = C([0,T]),x = Wiener measure. Then R, = {fOT f@)dw, : f e LQ[O,T]} and
M, = {h(t) = [T f(s)ds: f € LQ[O,T]}.

[Note: The integrals are defined since f € L? and deterministic and therefore progressively measurable
etc.]

Note: R,, is sometimes call the First Wiener Chaos]

Note: i : H, = Ry, h— [OT K (s)dW]

[
[
Lemma 4.1. p,v centered Gaussian on B. H, = B,H,, =H, and || - ||, = || - ||, on H,. Then pp =v

Proof. Take ¢ € B*. It suffices to show ¢*pu = £*v. B
¥,(6,0) = £(h) where h = ¥,0 € H,, = ||h||*. Also, h € H,. We don’t know that h € H,. Let h* =i, h.
There exists {£,} C B* such that ||¢,, — h*||12(,y — 0. Take h,, = X, £,. Then

U(h) =L(hp) +L(h — hy,) < Z, (L, 4,) + |4

B ||h — hnllB

Since convergence in H, implies convergence in B.
EV(E’ Z’ﬂ) < ||€||L2(U)||€’ﬂ||L2(u) — HEH?)?(M) = EN(&E) < ||£||L2(u) ||h*||L2(V)
—_——— ——
[1hl13,, ], =IRll2e,,

So, [l 22y < 11€]|L2(v) and similarly, [[€]|z2) < [[€]]L2 )
Thus, £*p and £*v are both centered Gaussian measures with the same variance, ||£|[z2(,) = [|€||L2@), O
= .

Lemma 4.2. h € H,, £ € B*. Then £(h) = ({,ih) 12,

Remark 4.3. If h € 7{#, this is essentially by definition. In other words, ih need not be in B* for “¢(h) =
X, (¢,ih)”

Proof. Let hy,, = h in ‘H, where h,, € 7—~lu. Then
U(hy) = X, (€ ihy) = L(h) = (€, ih) 12y
—_——

<evih>L2(“)

Lemma 4.3. For x € B, define ||z|| = sup {{(z) : £ € B*,E,(¢,£) < 1}}. Then
1. If x € H,, then ||z[| = [[z[|3;,. In particular, [[z]| < oco.
2. If ||z]| < oo, then z € H,,
3. = H,={z e B:|z|]| <oo}

Proof. 1. Let h € H,. Let £ € B, £,(6,6) < 1. Then £(h) = (£,ih), < ||€llL2(0 ikl 2y < [Pl -
—_——— ———

SRV
Taking the sup over all such £, we get that [|A[| < [[h]|3, < oo
2
Take ¢, L—(>“) ih, ¢, € B*. Then,

hi| > = I M
= S o7 = el bz

[Note: If h € 7:[;“ then ¢h maximizes the sup in ||h||. The norm ||z|| generalizes to when h ¢ "r’flﬂ via
approximation.]

2. Assume ||z|| < co. Define X : B* — R where £ — {(z). (Copying proof that B — B**.
Claim: If £ = 0 p—a.e. then X (¢) = 0 which by linearity implies X (¢) = X (¢) if £ =/ a.e.

. 4 l(x)
ILLECAL: ’X <<Z“(£_Z>>l/2>(

= |58 | < lal| < o0 so X (0)] < [l €] 220

What if ¥, (¢, /) = 07 Instead take £ # 0 a.e. and compute,

{4+ el
1€+ €l]|L2 ()

Thus, X extends to a bounded linear functional on R,. So, there exists an z* € R, : z({) =
(¢, x*>L2(H) VEER,.
Let h = ¥,2*. By definition,V £ € B*, x({) = (¢,2*), = £(h) but z({) = {(z), so x =h € H,,.

Corollary 4.2. If « ¢ H,,, then ||z|| = co i.e. there exists {¢,,} C B*: X,({,,¢,) =1 and £,(z) > n.
Theorem 4.5. (Cameron-Martin) h € B. Then p and T} are either

1. Absolutely continuous with respect to each other, if h € H,,.
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2. Mutually singular with respect to each other if h ¢ H,,

Remark 4.4. 1. Suppose u = EB. If dim #H,, = oo, then p(#H,) =0
2. If B=R%, then H,, is the support of the measure.

3. Think of the Cameron Martin theorem in terms of both degenerate and nondegenerate Gaussian
measures in R%.

Proof of part 2 of Cameron-Martin theorem (the proof of part 1 is done previously):

Proof. Let h ¢ H,, = 3(¢,) C B* such that ¥,(¢,,¢,) = 1 and ¢,(h) < —n. (We can do this since if
ln(h) > n, —{,(h) € B* with the same norm.) Then it suffices to show ||T;  — p||rv = 2 that is, there is no
overlapp or cancellation.

By the triangle inequality, ||T5u — pllryv < 2. Also,

| Thp — pllrviy > 16T 1 — £ pl| v (w)
— ———

sup over all partitions only partitions over sets Borel meas images of £,,

Set m,, = —£,(h). Then

16T 1 — Oyl lov @y llrv ) = [N (Mg, 1) = N0, 1) |7y ®)

1 i 2
e

2 ("2 v3/2 _ p(y=mn)?/2 2d (b )
= — e~ — ey mn Y y symmetry
V2T /_Oo ( )

= 2P[N(0,1) < my, /2] — 2PN (1, 1) < 1y, /2]
PIN(0,1)>m, /2]
=2(1—2PN(0,1) > m,/2])
2(1 — 2P[N(0,1) > n/2]) =3 2

O
[Note: The Cameron-Martin theorem tells us which direction we can go and have an equivalent measure.]
Corollary 4.3. (a) H, =(|{V : V C B a linear subspace of B, u(V) =1}
(b) p(H,) = 0if dim(H,) = oco.

Proof. (a) Let V C B be a linear subspace with (V) = 1. Let h € H,,. By the Cameron-Martin theorem,
u(V +h) = TFu(V) =1 (that is because p and T;p are absolutely continuous with respect to each
other). Then VN (V+h)#D=heV =H,CV.

Now, x ¢ H,, = 3(¢n) C B*, [|€n||12(n) = 1 and £ (x) > n. Define V = {y eEB: |y = Z M" ‘< oo}

o0 o0
Then |z = %735)‘2 > > 1=+o0osox¢ V. However, [ |y|?u(dy) = Z nz/\( ) u(dy) <
n=1 =1

n=1

so |yl < oo p—a.e. = pu(V) =1.

(b) Let (e}) C R,(C L*(B,p)) be an orthonormal basis. We know that (e,,) are N'(0,1) and orthogonal,
Elel (w)er,(w)] = Omn. Further, we know for n # m, (e, e’,) is a Gaussian vector with covariance

n m n»-m

matrix ((1) (1)>, so (e!) are independent.

[Note: Orthogonality does not imply independence in general, this is only due to (e}) being Gaussian.]
We also know limsup,,_, €} (z) = +oo. (If I wait long enough, it will be large: Borel Cantelli)

Since ie, = e}, (e,) is an orthonormal basis of H,,.

o) (o)
Yet, x € H,, ||91c||3_[H =3 (w,en)%{M = Zl el (z)? < oo.
n=1 n=

For these two things to be true simultaneously, it must be that p(#,) = 0. The complement of where
limsup e}, (x) = 400 has measure 0 and we have show that H,, is a subset of this set.
O

Recall: If x € H,, and £ = 0 p—a.e., then ¢(z) = 0. This is kind of crazy as it says that the information
contained in a null set dictates almost everything. This is because of the structure of the measure pu.

Theorem 4.6. Let (e,) be an orthonormal basis for H,. Let (§,)52; iid. N(0,1). Define Xy(w) =
Z &n(w)e, (Xn is a B—valued random variable). Then with probability 1, Xy N2 X in B where X is a

B valued random variable with law p.
[Note: With probability 1, X does not take values in #,,, but in the bigger space B.]
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M=z

Proof. £ € B, {(Xn(w)) — £(X) a.s. Take (Q,P) = (B, ) and &, = e =ie,,. Then Xy(z) = ef(z)e, —
n=1
X(z) == . N
Look at {(Xn(z)) = 21 ek (x)l(en) = g (0,e5) r2(uen () N2 p(x) in L2 (). O

Lemma 4.4. u a Gaussian measure on a separable Banach space B. Let B’ < B (continuous inclusion) be
a separable Banach space such that p(B') = 1. Then, H, ., = H,

Proof. (sketch) L?(B, ) = L*(B', u|p but it is not clear that B* = (B')* only that B* C (B')*.

Hy=( |V eB:p(V)=1} and HMB, =({VcB :uV)=1}DH,
However B’ is such that u(B') =1, so H, ﬂ{V NB :pu(V)=1} =Hy,,,

Now, we need to show |||+, = ||h||H“ )
—_ 2 —_
heH,=h= [zal(x)u(de) = [z xl(x)u(dr) where £ € R, = B s unique (£ =ih). ith =£ € B* C
(B)* = R, and |All2e, = 1€l 22 () (L? in B and B'), so ||h||Hu\5/' O

Thus, the B on which we define 1 doesn’t matter as long as it contains the support of u.

Theorem 4.7. (Lyons)(Motivation for Rough Path theory) 3! separable Banach space B such that C*([0, 1], R) <
B — C°([0,1],R), the Wiener measure j is supported in B, and (C* x C1) 3 (f, g) — fol f(g9)g'(s)ds extends
continuously to B x B.

[Note: {BM pa‘ths}aACS‘ cy = @H'Hm is a separable Banach space but does not satisfy the last hypothesis
of the theorem.]

Proof. (u,B) — H, = {h: h(0) = 0,n" € L*([0,1])} € H'([0,1]) and [|h[|3,, = fol |h|ds. (This is a norm

since h(0) = 0 and the P.C. inequality.
Define eo(t) = t and e, (t) = SR@™0 o (4) = 1=c9Cm™Y g ;¢ N (Fourier Modes). [e,(0) =

V27rn V21n
0,e,(1) =0V n # 0] Then {e,} is ONB for H,. Let {¢,} be iid N(0,1). Define Xn(t) = > &nen(t)
0<|n|<N
and Yy(t) = >, —sgn(n)é_,en(t).
0<|n|<N  S——~—""

&n
Then p—a.s. Xy — X and Yy — Y in B. [Note: X and YV are actually brownian bridges since we left
out the n = 0 terms]
&t + X and &t + Y are BM. (uses that u(B) =1)
Assume that we can integrated on B x B. Then p — a.s.

1
= / XN ()Y} (t)dt — something finite
0
For n > 0,¢€/,(t) = v/2cos(2mnt), e’_,,(t) = v/2sin(2mnt)
N

(2mnt ! cos?(2mnt
I_Zf / sin? Wn)dt—i-Zf%n/ cosfmﬂ'n)dt
0

n=1

(NTS that & — a.s. this diverges).

N
where Ly = > % Then, by Chebyshev,

n=1

N 2
—2
]P’[Z 5"n < —eLy
n=1

N
Since E[¢2] = 1, E[¢2 — 1] = 0. By independent, > E[|¢2 —1]] = C, so
n=1

2

n=1 < C
2Ly = (log(N))?

so the sequences goes to oo in measure.
We can pick a subsequence such that the terms are summable and apply Borel-Cantelli to show that the
subsequence converges a.s. Then use monotonicity of the sum to show that the sequence converges a.s. [
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White noise: Random “function” ¢ : Q x II? — R such that E[¢(2)¢(y)] = do(z — y). As a distribution

E[(&, )(€,9)] = (¢, 1) 2. Perhaps ¢ € L*(I1%) ?

Let {e,} be a Fourier basis, £(z) = > &nen(w) for some &, iid M(0,1). then p a centered Gaussian
nezd

measure on L2(TI1%) = B = B* where u(A) = P(¢(-) € A).
Then 2, (¢, ¥) = (¢, ) 2. Then ¥, = ¢ since

(B, ) = Zu(p, ) = (@, ).

By Id is not compact, so & cannot be L?(I1%)— valued.
What we'll do is take H, = L?(I1?) and find a suitable B with H,, as is Cameron-Martin space.
We want to find a space where the Cameron-Martin space is L%. Define

H (M) =< feD' () : ) f@P < o0
o (L [K[2)®

11,

Then &(z) = Y. &per(w) where (er) is Fourier basis of L2(I1%) is in H~* for s > d/2 (since E[|[¢]|%,_.] =
kezd

> W] < oo for s > d/2).

kezd

@(k) Ny

For p € H™3, (HAWQ)S = (Id — A)=3¢p(k), “undoing 2 derivatives”. So for ¢, € H ™%,

<30a w>H*S = <(Id - A)_S@a ¢>L2-

So, we define u(A) = P(¢ € A) for A C H=% = p is Gaussian measure on H~*(II¢). Then the covariance
operator, @, € (H™*)* = H™5,

P(k)P(k)

EH(§07'¢) = E[<¢7£>H*S<w7§>H*S] = Z W

kezd

=(Id=A)"p, )+

since the cross terms vanish (independence). Thus, X, = (Id —A)™®*: H * — H %,

L2(11%) < H—(I1%), then we also have the adjoint map, (H~*(I1%))* = H* N (L2(O%))* = L3(114).
So, for o € L? and f € H™*

(@ f e = (frig) s = ((Id— D) f,hpa = i* = (Id— &)™ = 5, = ii*

The Cameron-Martin Space is L?: starting with ¢ € '7'-2“ = 3f € H™® such that o = (Id— A)~*f € H*
(add 2s derivatives) and norm

ol = Su(f f) = (d = D) f, flu— = ((Id = A)7*f,(Id = D)™ f) = [|gl|72
Then H, = 5" = I2.

e White noise over a general Hilbert space, H: (1) find Hilbert space K such that H i) K where

it* : K — K is trace class, (2) define ;1 to have covariance operator i:*, (3) then ) &,e, ~ p where
(en) is ONB of H.

e Spacetime white noise on [0, T]xI1¢ “W (t, z) = fot &(s,x)ds” where “¢(t,x)”. Then E[W (s, )W (t,y)] =
(s At)o(z —y) = W(t,z) = . Wlei(z) where (W¥),cz4 independent Brownian motions. W is
kezd
called a cylindrical Brownian motion over L?(II?) which is specified by a Gaussian measure p on
C([0,T), H=*(11%)), s > d/2. We only need the covariance to specify this measure.

2 w € H_Sv EKWSa ¢>H*S<Wt7w>H*5] = (8 A t)<(1d - A)_SQO,IMH*S
H, = H([0,T), L?(I1¢)) (where here the 0 indicates that h(t = 0) = 0.

Example 4.6. (Stochastic Heat Equation)
du = (Ugy — Au)dt + odW

where W is cylindrical BM over L?(I1¢). We can completely diagonalize this operator, u(t,z) = . Y/ ex(x).
kEZ
For (ey) eigenfunctions, (92 —\)(er, = —(k* + A)e. Then we get a system of SDEs, dY,F = —u, Y,Fdt+odW;.
1223

Further, 3vo such that Y = 44 ~ AN(0,~?) such that Y ~ Y}*. In this case, Y,f ~ N (0, e 2ty 4 (1 — 6_2Mkt%>

so we choose v% =
Vil ~ =~ Toou(t,)€EH Vs < i
We can lift u(t, ) to Rough Path space, (u(t,),=(t,-)) € €, for a < 1/2 (just like BM)

**These notes were taken from a class taught by Ben Seeger in Spring 2024 at UT Austin.**
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