
Probability I Prelim Problems Luisa Velasco

January 2023

1.

2.

Let X be a random variable with X ≥ 0 a.s., and suppose E[X] ≤ 1 and E[X2] ≤ 10. Given this information,
for every t ≥ 0 find the best possible upper bound for P[X > t].

Solution.

E[X] = E[X1X≤t] + E[X1X>t] ≥ E[X1X≤t + tP[X > t]

⇒ P[X > t] ≤ E[X]

t
≤ 1

t

E[X2] = E[X21X≤t] + E[X21X>t] ≥ E[X1X≤t] + t2P[X > t]

⇒ P[X > t] ≤ E[X2]

t2
≤ 10

t2

For 0 ≤ t ≤ 10, 1
t ≤ 10

t2 and for t > 10, 10
t2 < 1

t , so

P[X > t] ≤ f(t) =

{
1
t 0 ≤ t ≤ 10
10
t2 t > 10

.

3.

Let ξ1, ξ2, . . . be independent coin flips and define Sn

n∑
i=1

ξi.

(a) Compute E[S10|ξ1]

(b) Compute E[S2
10|ξ1]

(c) Compute E[ξ|S10]

Solution.

(a) E[S10|ξ1] =
10∑
i=1

E[ξi|ξ1] = ξ1

(b) E[S2
10|ξ1] = E[

10∑
i=1

ξ2i + 2
∑
i ̸=j

ξiξj |ξ1] = 10

(c) Since ξi are iid, E[ξi|§10] = E[ξj |S10] for 1 ≤ i, j ≤ 10. Thus,

E[S10|S10] =

10∑
i=1

E[ξi|S10] =

10∑
i=1

E[ξ1|§10 = 10E[ξ1|§10] = S10 ⇒ E[ξ1|S10] =
1

10
S10

.

August 2022

1.

1. Show for any random variable X, and any s, t ≥ 0,

P[X ≥ t] ≤ e−stE[esX ]

2. Let ξ1, . . . , ξn be independent coin flips and Xn =
n∑

i=1

ξn. Prove that for any t ≥ 0,

P[Xn ≥ t
√
n] ≤ e−t2/2.

Solution.

1.
E[esX ] = E[esX1X<t] + E[esX1X≥t] ≥ estP[X ≥ t].

Since esX ≥ 0, This implies p[X ≥ t] ≤ e−stE[esX ].

2. By (1), P[Xn√
n
≤ t] ≤ e−t2E[etXn/

√
n], so we want to evaluate this expectation.

E[etXn/
√
n] =

n∏
i=1

E[e
t√
nξi ] =

n∏
i=1

1

2

(
e
− t√

n + e
t√
n

)
=

n∏
i=1

cosh(
t√
n
)

= (cosh(
t√
n
)n ≤ ((e

1
2

(
t√
n

)2

)n = e
1
2 t

2

.

Thus, P[Xn ≥ t
√
n] ≤ e−t2et

2/2 = e−t2/2.
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2.

For random variables X and Y defined

d(X,Y ) = inf{ϵ ≥ 0 : P[|X − Y | > ϵ] ≤ ϵ.

Prove that d metrizes convergence in probability, in the sense that Xn → X in probability if and only if
d(Xn, X) → 0.

3.

Let ξ1, ξ2, . . . be iid coin flips. Let Xn =
n∑

i=1

ξn, and let

T = inf{n ≥ 4 : ξn = −1 and ξn−1 = ξn−3 = 1}.

1. Compute E[XT ]

2. Compute E[XT+1]

3. Compute E[XT−1]

Solution.

1. E[XT ] =
T−4∑
i=1

E[ξi] + E[ξT−3 + ξT−2 + ξT−1 + ξT ] =
1
2 (0) +

1
2 (2) = 1

2. E[XT+1] = E[XT ] + E[ξt+1] = 1

3. E[XT−1] =
T−4∑
i=1

E[ξi] = E[ξT−3 + ξT−2 + ξT−1] =
1
2 (1) +

1
2 (3) = 2

2.

Let µ be a probability measure on R and let φ is characteristic function. Show that µ has no atoms if

lim
T→∞

1

2T

∫ T

−T

e−itaφ(t) dt = 0 for all a ∈ R.

Solution. Let a ∈ R.

lim
T→∞

1

2T

∫ T

−T

e−itaφ(t) dt = lim
T→∞

1

2T

∫ T

−T

e−ita

∫
R
eitx µ(dx)dt = lim

T→∞

1

2T

∫
R

∫ T

−T

eiT (x−a dtµ(dx)

= lim
T→∞

∫
R

(
eiT (x−a) − e−iT (x−a)

)
2iT (x− a)

µ(dx)

= lim
T→∞

∫
R

sin(T (x− a))

T (x− a)
µ(dx)

= lim
T→∞

∫
R\{a}

sin(T (x− a))

T (x− a)
µ(dx) + lim

T→∞

∫
{a}

sin(T (x− a))

T (x− a)
µ(dx)

=

∫
R

lim
T→∞

sin(T (x− a))

T (x− a)
µ(dx) = µ({a}) = 0

Since a ∈ R was chosen arbitarily, µ has no atoms.

January 2022

1.

Suppose that {Xn, n ≥ 1} is a sequence of iid nonnegative random variables. If E[X1] = ∞, show tht

1
n

n∑
k=1

Xk → ∞.

Solution. For the sake of contradiction, suppose 1
n

n∑
k=1

Xk ̸→ ∞. Thus, since Xn ≥ 0 a.e., there exists

a C ≥ 0 such that 1
n

n∑
k=1

Xk < C ∀ n. Thus, X1 < C, so E[X1] < C, a contradiction since E[X1] = ∞.

January 2021

1.

Let µ be a probability measure on B([0,∞)) with the following property:

µ([a, b]) = e−a − e−b, for all 0 ≤ a < b.

Show that µ is absolutely continuous with respect to the lebesgue measure from first principles.
Solution. Let µ̃ be a measure defined by µ̃(A) =

∫
A
e−x λ(dx) ∀ A ∈ B([0,∞)). µ̃ << λ and µ̃([a, b]) =

e−a − e−b = µ([a, b]) ∀ 0 ≤ a < b. The set {[a, b] : 0 ≤ a < b} is a π−system hat generates B([0, 1]). Since µ̃
and µ agree on this π system, by the π − λ theorem, µ = µ̃ on B([0,∞)). Thus, µ << λ.
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2.

Let Y be a standard normal random variable, and let X be a random variable such that both pairs (X,Y )
and (X,X − Y ) are independent. Show that X is constant with probability 1.

Solution. Since (X,X − Y ) and (X,Y ) are independent, Cov(X,X − Y ) = Cov(X,Y ) = 0. Thus,

Cov(X,X − Y ) = E[X(X − Y )]− E[X]E[X − Y ] = E[X2 −XY ]− E[X]2 + E[X]E[Y ]

= (E[X2]− E[X]2)− (E[XY ]− E[X]E[Y ]) = Var(X)− Cov(X,Y ) = Var(X) = 0.

Since Var(X) = 0. X is constant with probability 1.

3.

Let {Xn} be a simple symmetrc random walk and let |X| = M + A be the Doob-Meyer decomposition of
the submartingale |X|, with respect to filtration generated by X, into martingale M with M0 = 0 and a
non-decreasing predictable process A. Show that M admits the representation

M = H ·X,

for some predictable process H and find the explicit expression for H.

Solution. For |X| = M +A, A =
n∑

k=1

E[|Xk| − |Xk−1||Fk−1]

For Xk−1 < 0, Xk ≤ 0 ⇒ |Xk| − |Xk−1| = −Xk +Xk−1 = −ξk

For Xk−1 > 0, Xk ≥ 0 ⇒ |Xk| − |Xk−1| = Xk −Xk−1 = ξk

For Xk−1 = 0 |Xk| − |Xk−1| = |Xk| = 1

So, |Xk| − |Xk−1| = ξk(1Xk−1>0 − 1Xk−1<0) + 1Xk−1=0

Thus,

Mn = |X|n −An = |Xn| −
n∑

k=1

E[ξk(1Xk−1>0 − 1Xk−1<0) + 1Xk−1=0|Fk−1] = |Xn| −
n∑

k=1

1Xk−1=0

=
∑
k=1

(|Xk| − |Xk−1|)−
n∑

k=1

1Xk−1=0 =

n∑
k=1

ξk(1Xk−1>0 − 1Xk−1<0) + 1Xk−1=0 − 1Xk−1=0

=

n∑
k=1

ξk(1Xk−1>0 − 1Xk−1<0) =

n∑
k=1

(1Xk−1>0 − 1Xk−1<0)(Xk −Xk−1) = (H ·X)n

where Hk = 1Xk−1>0 − 1Xk−1<0 is a predictable process.

August 2021

1.

Let Xn be a sequence of random variables taking values in N. Is it true that Xn converges a.s. if and only
if Xn converges in probability? If it is, give a proof. Otherwise, give a counterexample.

Solution. In general, it true that Xn → X a.s. implies convergence in probability. It remains to show
the other direction for Xn taking values in N. Suppose Xn converges to X in probability. Then there exists a
subsequence {Xnk

} which converges to X a.s. Since {Xnk
} is integer-valued, it only converges if it stabilizes.

Thus, X ∈ N. Since Xn, X are integer-valued, if Xn ̸= X, |Xn −X| ≥ 1. Let ϵ > 0 be given. Thus, there
exists an N such that for all n ≥ N since P[|Xn −X| ≥ 1

2 ] ≤ ϵ which implies |Xn −X| = 0 except on a set
of measure at most ϵ. Taking, ϵ → 0, Xn → X a.s.

2.

Let X1, X2, . . . be i.i.d random variables with values in Z2, where X1 is uniformly distributed in {(k,m) :

k ∈ {−1, 0, 1},m ∈ {−1, 0, 1}}. Let Sn =
n∑

i=1

Xi ∈ Z2. Show that Sn√
n

d→ S∗, and find the distribution of S∗.

Solution. Var(X1) = E[X2
1 ]− E[X1]

2 = E[X2
1 ] =

(
2
3 ,

2
3

)
. Then, by the CLT,

Sn√
n

d→ χ ∼ N((0, 0), (
2

3
,
2

3
)).

3.

Give an example of a submartingale {Xn} with the property that Xn → −∞ and E[Xn] → +∞, as n → ∞.
Solution.

3
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August 2020

0.1 1.

Let X be a nonnegative random variable. Show that

E[X log+(X)] < ∞ ⇔
∫ ∞

1

∫ ∞

1

P[X > uv]dudv < ∞,

where log+(x) = max(log(x), 0).
Solution.∫ ∞

1

∫ ∞

1

P[X > uv]dudv =

∫ ∞

1

∫ ∞

1

1

v
P[X > w]1w≥vdwdv =

∫ ∞

1

P[X > w]

∫ w

1

1

v
dvdw

=

∫ ∞

1

P[X > w] log(w)dw =

∫ ∞

1

∫ ∞

0

1X>w(x) log(w)P(dx)dw

=

∫ ∞

1

∫ x

1

log(w) dwP(dx) =
∫ ∞

1

x log(x)− x+ 1dP(x) = E[(X log(X)−X + 1)1X>1]

= E[X log+(X)−X + 1].

Since x log(x) grows faster than x, E[X log+(X)−X + 1] < ∞ ⇔ E[X log+(X)] < ∞.

3.

Let X be a bounded random variables on (Ω,F ,P), let G be a sub-σ−algebra of F , and let Q be a measure
on F , absolutely continuous with respect to P. Is the following

EQ[X|G] = E[
dQ
dP

X|G] a.s.

always true? If so, prove it. If not, fix the right-hand side without using any (conditional) expectations
under Q.

Solution. This is not true. Take G = F . Then EQ[X|F ] = X and E[dQdPX|F ] = dQ
dPX. Let ξ = EQ[X|G]

and η = E[dQdP |G]. We want to show ξη = E[dQdP x|G]. Since ξ, η are G measurable, ξη are G measurable. Let

A ∈ G. We want to show E[ξη1A] = E[xdQ
dP 1A].

E[ξ
dQ
dP

1A] =

∫
A

ξ
dQ
dP

dP =

∫
A

ξdQ =

∫
A

xdQ =

∫
A

x
dQ
dP

dP = E[X
dQ
dP

1A].

Thus, it is sufficent to show E[ξη1A] = E[ξ dQ
dP 1A].

E[ξη1A] =

∫
A

ξηdP =

∫
A

ξE[
dQ
dP

|G]dP =

∫
A

E[ξ
dQ
dP

|G]dP =

∫
A

ξ
dQ
dP

dP = E[ξ
dQ
dP

1A].

So, by the definition of conditional expectation,

EQ[X|G] =
E[dQdPX|G]
E[dQdP |G]

.

January 2019

3.

Let Z1 and Z2 be independent standard normals. Find the conditional density of e3Z1+Z2 given σ(eZ1+2Z2).
Solution. Let X = 3Z1 +Z2, Y = Z1 + 2Z2, Z = 2Z1 −Z2. Since Z1 and Z2 are independent standard

normals, X,Y, and Z are normal random variables. Since normal random variables are independent if and
only if they are uncorrelated, and

Cov(Y, Z) = E[Y Z] = E[2Z2
1 − Z1Z2 + 4Z1Z2 − 2Z2

2 ] = 0,

Y and Z are independent. Further, we can write X = Y + Z. Thus, when we condition X on Y , as this
would be equivalent to conditioning on eY , X conditioned on Y is a normal random variable with mean Y
and variance Var(X|Y ) = Var(Z) = 5. Since the normal distribution for a random variable with mean µ
and variance σ2 is given by

1√
2πσ2

exp(− (x− µ)2

2σ2
).

Thus, the distribution its exponential function is

1

x
√
2πσ2

exp(− (log(x)− µ)2

2σ2
).

So, the conditional density of eX given Y is

1

x
√
10π

exp(− (log(x)− Y )2

10
).
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January 2018

3.

Let X and Y be random variables in L2(Ω,F ,P) such that either

1. (X(ω′)−X(ω)) (Y (ω′)− Y (ω)) ≥ 0 ∀ ω, ω′ ∈ ω

2. the function y 7→ E[X|Y = y] is nondecreasing.

Show Cov(X,Y ) ≥ 0.
Solution.

1. Suppose (X(ω′)−X(ω)) (Y (ω′)− Y (ω)) ≥ 0 ∀ ω, ω′ ∈ Ω.

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] =

∫
Ω

(X − E[X])(Y − E[Y ])dP

=

∫
Ω

∫
Ω

(X(ω)−X(ω′))(Y (ω)− Y (ω′))dP(ω′)dP(ω) ≥ 0

2. Suppose y 7→ E[X|Y = y] is nondecreasing.

August 2018

3.

Let (Ω,F ,P) be a probability space, G a sub-σ-algebra of F and {An} a sequence of G independent random
variables. Show that { ∞∑

i=1

P[Ai|G] = ∞

}
=

{
P[lim sup

i→∞
Ai|G] = 1

}
, a.s.,

where, as usual two events are equal a.s., if their indications are a.s.-equal random variables.
Solution. We are given the following equivalent definition of conditional independence: {Ai} is an

independent sequence under the probability measure PB := P[· ∩B]/P[B] for each B ∈ G with P[B] > 0.
Call the left and right sides of the equation L and R respectively. Then L,R ∈ G. For B ∈ G with

P[B ∩ L] > 0, Fubini’s theorem and the definition of conditional expectation imply

∞ = EB∩L

[∑
i

P[Ai|G]

]
=

∫ ∑
i

P[Ai|G]dPL∩B =
1

P(B ∩ L)

∫ ∑
i

P[Ai|G]1B∩LdP

=
1

P[B ∩ L]

∑
i

E [P[Ai|G]1B∩L] =
1

P[L ∩B]

∑
i

P[Ai ∩ (L ∩B)] =
∑
i

PL∩B [Ai]

By the given equivalent definition of conditional independence, {Ai} are independent under PL∩B . Thus, by
the second Borel-Cantelli Lemma,

PB∩L[lim sup
i

Ai] =
E[1B1L1lim supi Ai

]

E[1B1L]
= 1 → E[1B1L1lim supi Ai

] = E[1B1L] ∀ B ∈ G.

This equality is satisfied trivially if P[B ∩ L] = 0.
By the definition of conditional expectation,

E[1B1L1lim supi Ai ] = E[(1lim supi Ai1L)1B ] = E[1L1B ]

so by the definition of conditional expectation,

E[1lim supi Ai
1L|G] = 1LP[lim sup

i
Ai|G] = 1L a.s.

So P[lim supi Ai] = 1 a.s. which implies L ⊂ R a.s.
For the other inclusion, define Lc

n = {
∑
i

P[Ai|G] ≤ n} ∈ G. For P[Lx
n ∩B] > 0, we have

∞ >
n

P[Lc
n ∩B]

≥ EB∩Lc
n

[∑
i

P[Ai|G]

]
=

∑
i

PB∩Lc
n
[Ai].

Thus, by the first Borel-Cantelli Lemma, PB∩Lc
n
[lim supi Ai] ⇒ E[1B1Lc

n
1lim supi Ai

] = 0. So, by the definition
of conditional expectation, 1Lc

n
P[lim supi Ai|G] = 0 a.s. That is Lc

n ⊂ Rc, a.s. It is clear that Lc
n ⊂ Lc. Let

ω ∈ Lc, then since P[Ai|G](ω) ≥ 0 ∀ i and
∑
i

P[Ai|G] ̸= ∞, there exists an N such that
∑
i

P[Ai|G](ω) < N ,

so ω ∈ Lc
N ⊂

⋃
n L

c
n, so Lc =

⋃
n L

c
n. Thus, R

c = Lc, so R = L.
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January 2016

1.

Let X1, . . . , Xn, n ≥ 2 be iid absolutely continuous random variables, with density f . Consider the random
vector X = (X(1), X(n)), where

X(1) = min(X1, . . . , Xn) and X(n) = max(X1, . . . , Xn).

1. Derive the joint density fX of X and the density of the range X(n) −X(1).

2. n iid points are chosen uniformly in the square [0, 1]2. Let A be the area of the smallest rectangle
with sides parallel to the sides of the square [0, 1]2, which contains all n points. Compute the moments
E[Ak], k ∈ N, of A.

Solution.

1. First, we want to derive the joint density fX .

P[X(1) ≤ x,X(n) ≤ y] = P[(
n⋃

i=1

{Xi ≤ x}) ∩ (

n⋂
i=1

{Xi ≤ y})] = P[(
n⋂

i=1

{Xi ≤ y})\(
n⋂

i=1

{x < Xi ≤ y})]

= P[
n⋂

i=1

{Xi ≤ y}]− P[
n⋂

i=1

{x < Xi ≤ y}] = P[X1 ≤ y]n − P[x < X1 ≤ y]n

=

(∫ y

−∞
f(x)dx

)n

−
(∫ y

x

f(x)dx

)n

⇒ fX(x, y) = n(n− 1)f(x)f(y)P[x < X1 ≤ y]n−2

2.

Let µ be a probability measure on R. Show that the following are equivalent, where φµ denotes the charac-
teristic function of µ:

1. µ is supported by a set of the form {an+ b : n ∈ Z} for a pair of rational numbers a, b.

2. φµ(2πt0) = 1 for some rational t0 ̸= 0.

Solution. (1) → (2). Suppose µ is supported on {a
bn+ c

d : n ∈ N} for a, b, c, d ∈ Z and b, d ̸= 0. Then

φµ(t) =

∫ ∞

∞
eitxµ(dx) =

∑
n∈N

eit(
a
b n+

c
d )µ({a

b
n+

c

d
}) =

∑
n∈N

(cos(t(
a

b
n+

c

d
)) + i sin(t(

a

b
n+

c

d
)))µ({an+ b}).

Thus, it is sufficient to find t0 such that cos(2πt0(
a
bn+

c
d ) = cos(2π t0

bd (adn+cb)) = 1 ∀ n. Since abn+cd ∈ Z,
for t0 = bd, cos(2π t0

bd (adn+ bc)) = 0.
(2) → (1). Suppose ϕµ(2πt0) = 1 for some rational t0 ̸= 0.

1 = ϕµ(2πt0) =

∫ ∞

−∞
ei(2πt0)xµ(dx) ≤

∫ ∞

−∞
µ(dx) = 1,

ei(2πt0)x = 1 on the support of µ. Thus, µ is supported of x such that cos(2πt0x) = 1, that is when t0x ∈ Z.
Since t0 is rational, we can express t0 = a

b . Then a
bx = n ∈ Z, so x = b

an. So, µ is supported on the set
{ 1
t0
n : n ∈ Z}.

3.

Consider a probability space (Ω,F ,P), a random variable X ∈ L2(F) and a sub−σ-algebra G ⊂ F . Find the
projection of X on the space L2(G) of square-integrable random variables measurable with respect to G. In
other words, find the random variable Ŷ that attains

min
Y ∈L2

E[|X − Y |2].

Justify your answers.
Solution. Since L2(F) is a Hilbert space and L2(G) is a closed subset of L2(F), there exists a unique

Ŷ ∈ L2(G) such that E[|X − Ŷ |2] = minY ∈L2(G) E[|X − Y |2]. Thus, we know Ŷ is G−measurable. Further,

since Ŷ minimizes, we have E[(X − Ŷ )(Z − Ŷ )] = 0 ∀ Z ∈ L2(G). Choose Z = Ŷ − 1A for A ∈ G. Then
E[(X − Ŷ )1A] = 0 ⇒ E[X1A] = E[Ŷ 1A]. So Ŷ = E[X|G].
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