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August 2013

1.

Let {Bt} be the Brownian motion, and let σ be the last visit to the level 0 before t = 1, i.e.,

σ = sup{t ≤ 1 : Bt = 0}.

1. Show that σ is not a stopping time

2. Show that

σ
d
=

X2

X2 + Y 2

where X and Y are independent unit normals.

Solution.

1. Since Bt is BM, B2
t − t is a martingale. For the sake of contradiction, suppose σ is a stopping time.

Then since σ is bounded, we may apply the Bounded optional sampling theorem,

E[B2
σ − σ] = 0 ⇒ E[σ] = 0.

This, implies P[σ = 0] = 1. However, we know that σ has an arcsine distribution, so

P[σ = 0] =
2

π
arcsin(0)− 0,

a contradiction,

2. {σ ≤ t} = {supt≤s≤1 Bs < 0} ∪ {inft≤s≤1 Bs > 0}, so since (supt≤s≤1 Bs − Bt, Bt) ∼ (|B1 − Bt|, Bt)
and |B1 −Bt| and Bt are independent.

P[σ ≤ t] = 2P[ sup
t≤s≤1

Bs < 0] = 2P[ sup
t≤s≤1

(Bs −Bt) ≤ −Bt] = 2P[M1−t < −Bt] = 2P[|B1 −Bt| < −Bt]

= P[|B1 −Bt| < |Bt|] = P[(B1 −Bt)
2 < B2

t ]

Since B1 −Bt ∼ N(0, (1− t)) ∼
√
1− tX, and Bt ∼ N(0, t) ∼

√
tY where X,Y ∼ N(0, 1). Then

P[σ ≤ t] = P[(1− t)X2 < tY 2] = P[
X2

X2 + Y 2
< t].

so σ ∼ X2

X2+Y 2 .

2.

Let M and N be two continuous local martingales. Show that E(M)E(N) is a local martingale if and only
if MN is a local martingale.

Solution. By the definition of quadratic covariation, MN is a local martingale if and only if ⟨M,N⟩ = 0.
Further, E(M)E(N) = E(M+N)E(⟨M,N⟩) = E(M+N) exp(⟨M,N⟩). SinceM+N is a local martingale, E is
a local martingale. Thus, ifMN is a local martingale, ⟨M,N⟩ = 0, so E(M)E(N) = E(M+N)e0 = E(M+N),
so E(M)E(N) is a local martingale.

⟨E(M)E(N)⟩ =
∫ t

0

E(M)E(N)d⟨M,N⟩ = 0

Since E(M)E(N) > 0, ⟨M,N⟩ must be constant (?). So, since ⟨M,N⟩0 = 0, ⟨M,N⟩ = 0, so MN is a local
martingale.

3.

Let {Bt} be a Brownian motion. For c ∈ R, compute

P[Bt + ct < 1,∀ t ≥ 0].

Solution. Let Xt = Bt + ct. For c > 0, P[Bt + ct < 1,∀ t ≥ 0] = 0. Thus, assume c ≤ 0. For Brownian
motion Bt, we know that the exponential martingale exp(λBt − 1

2λ
2t) is a martingale for λ ∈ R. Then, we

can choose λ = −2c, so that Mt = exp(−2c(Bt + ct)) = exp(−2cXt). Since c < 0, Mt is a martingale such
that Mt → 0 and t → ∞. Define τ = inf{t ≥ 0 : Mt = exp(−2c)}. Since Mτ

t is bounded and therefore
uniformly integrable, by the optional sampling theorem

E[Mτ ] = P[τ < ∞] exp(−2c) + P[τ = ∞](0) = E[M0] = 1 → P[τ < ∞] = exp(2c)

P[Xt < 1 ∀ t ≥ 0] = P[sup
t≥0

Xt < 1] = P[sup
t≥0

Mt < exp(−2c)] = 1− P[τ < ∞] = 1− exp(2c).
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1.

Let (Mt)0≤t≤T be a submartingale and let λ > 0. Show that

λP( max
0≤t≤T

Mt ≥ λ) ≤ E[Mt1max0≤t≤T Mt≥λ].

1. Consider a one-dimensional Brownian motion at B0 = 0. Let u, v : [0,∞) → R be such that u is C1,
strictly increasing and u(0) = 0. Assume also that v(t) ̸= 0 for each t and v has bounded variation.
Show that the process

Xt = v(t)Bu(t)

is a semi-martingale and the martingale part is
∫ t

0
v(s)dBu(s).

2. Show that the martingale part is a Brownian motion if and only if v2(s)u′(s) = 1 for each s

3. Find u, v such that X defined above is an Orstein-Uhlenbeck process with parameter β, dXt = βXtdt+
dγt for some Brownian motion γ.

Solution. Let (Mt)0≤t≤T be a submartingale. Then

λP[ max
0≤t≤T

Mt ≥ λ] = E[λ1max0≤t≤T Mt≥λ] ≤ E[Mt1max0≤t≤T Mt≥λ].

1. First, let’s show that Mt =
∫ t

0
v(s)dBu(s) is a martingale. Let r < t. Let {∆n} be a sequence

of partitions such that ∆n →Id. Then let Mn
t =

n∑
k=1

v(tk)(Btk∧t − Btk−1∧t). So, E[Mn
t |Fr] =

n∑
k=1

v(tk)E[(Btk∧t − Btk−1∧t)|Fr] =
n∑

k=1

v(tk)(Btk∧r − Btk−1∧r) = Mn
r . Taking the limit as n → ∞,

Mt is a martingale. Now, we want to show that Xt −
∫ t

0
v(s)dBu(s) is of finite variation. To do this we

look at the total variation,

sup

k∑
i=1

|v(ti)Bu(ti) −
∫ ti

0

v(s)dBu(s) − v(ti−1)Bu(ti−1) +

∫ ti−1

0

v(s)dBu(s)|

= sup

k∑
i=1

|(v(ti)Bu(ti) − v(ti−1)Bu(ti−1)) +

∫ ti

ti−1

v(s)dBu(s)|

2. By the Lévy characterization of a Brownian motion, we just need ⟨
∫ t

0
v(s)dBu(s)⟩ = t. Let Mt =∫ t

0
v(s)dBu(s). Then d⟨Mt⟩ = dMtdMt = v(t)2dBu(t)dBu(t) = v(t)2du(t), so ⟨M⟩t =

∫ t

0
v(s)2du(s) =∫ t

0
v(s)2u′(s)ds = t. Since v2(s), u′(s) ≥ 0 ∀ s ∈ [0,∞), v(s)2u′(s) = 1 ∀ s.

3. Since Xt is a semimartingale, we can apply Ito’s formula,

dXt = v(t)dBu(t) +Bu(t)dv(t).

To be a OU process, need
∫ t

0
v(s)dBu(s) to be a Brownian motion, which implies v2u′ = 1 from above

and Bu(t)dv(t) = βv(t)Bu(t)dt. This occurs when dv(t) = βv(t)dt, so v(t) = Ceβt, C ̸= 0. Then since

v2u′ = 1, implies u′(t) = C−2e−2βt. Thus, u(t) = − 1
2C2β e

−2βt + D. Since u(0) = 0, D = 1
2C2β , so

u(t) = 1
2C2β (1− e−2βt).

2.

(Range of Brownian Motion) Let B be a one-dimensional BM starting at zero. Define

St = max
s≤t

Bs, It = inf
s≤t

Bs, θc = inf{t : St − It = c},

for some c > 0.

1. Show that for each λ, the process

Mt = cosh(λ(St −Bt)) exp(−
λ2t

2
)

is a martingale.

2. Prove that E[exp(−λ2θc
2 )] = 2

1+cosh(λc .

Solution
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1. Let 0 ≤ s < t.

E[exp(λ(St −Bt))|Fs] = E[exp(λ((St −Bt)− (Ss −Bs) + (Ss −Bs))|Fs]

= exp(λ(Ss −Bs))E[exp(λ((St − Ss)− (Bt −Bs))|Fs]

E[exp(λ((St − Ss)− (Bt −Bs))|Fs] = E[exp(λ(|Bt −Bs|)] =
2√
2π

∫ ∞

0

eλxe−
x2

2(t−s)
dx

=
2√

2π(t− s)
e

λ2(t−s)
2 2

∫ ∞

0

e−
x2

2(t−s)
+λx−λ2(t−s)

2 dx

=
2√

2π(t− s)
e

λ2(t−s)
2

∫ ∞

0

e
−( x√

2(t−s)
−λ

√
t−s√
2

)2

dx

=
2√

2π(t− s)
e

λ2(t−s)
2

√
2(t− s)

∫ ∞

0

e−u2

du

=
2√
π
e

λ2(t−s)
2

√
π

2
= e

λ2(t−s)
2 .

Similarly, E[exp(−λ(St −Bt))|Fs] = exp(λ(Ss −Bs))e
λ2(t−s)

2 . Thus,

E[cosh(λ(St −Bt))|Fs] = cosh(λ(Ss −Bs))e
λ2(t−s)

2

which implies

E[Mt|Fs] = cosh(λ(Ss −Bs))e
λ2(t−s)

2 e
−λ2t

2 = Ms.

So Mt is a martingale.

2. The stopped martingale Mθc
t is bounded and thus uniformly integrable. So, by the optional sampling

theorem,

E[Mθc ] = E[cosh(λ(Sθc −Bθc) exp(−
λ2θc
2

] = E[M0] = 1

⇒ E[exp(−λ2θc
2

] =
1

E[cosh(λ(Sθc −Bθc))]

Since Bθc = Sθc or Bθc = Iθc with equal probability (by the symmetry of BM),

E[cosh(λ(Sθc −Bθc)] =
1

2
+

1

2
cosh(λc).

So,

E[exp(−λ2θc
2

)] =
2

1 + cosh(λc)
.

August 2014

2.

Let (Wt)0≤t≤1 a BM (defined only up to time one). Show that the two dimensional vector(
W1,

∫ 1

0

sgn(Ws)dWs

)
has the following properties:

1. both marginals are normal N(0, 1)

2. however, it is NOT a joint normal random vector

Solution.

1. From the definition of BM, W1 = W1−W1 ∼ N(0, 1). Let ∆n be a sequence of partitions of [0, 1] such

that ∆n → Id. Then Mn
t =

n∑
i=1

sgn(Wti)(Wti −Wti−1
). From the definition of BM, these increments

Wti −Wti−1 are independent and sgn(Wti)(Wti −Wti−1) ∼ N(0, ti− ti−1. Thus, since ∆n is a partition
of [0, 1], Mn

t ∼ N(0, 1) ∀ n. Thus, since Mn
t → Mt as n → ∞, Mt ∼ N(0, 1).

2.

3.

(Stratonovich integral and chain rule) For two continuous semi-martingales X and Y (on the same space
and filtration), we define the Stratonovich integral∫ t

0

Xs ◦ dYs =

∫ t

0

XsdYs +
1

2
⟨X,Y ⟩t,

3
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where
∫ t

0
XsdYs represents the Itô integral. Show that if f ∈ C3, and X is a continuous semimartingale,

then we have the chain rule

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) ◦ dXs.

Solution. Since f ∈ C3 and X is a a continuous semi-martingale, we can apply Itô’s formula,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d⟨X⟩s.

Since
∫ t

0
f ′(Xs) ◦ dXs =

∫ t

0
f ′(Xs)dXs +

1
2 ⟨f

′(X), X⟩t, it is sufficient to show that∫ t

0

f ′′(Xs)d⟨X⟩s = ⟨f ′(X), X⟩t.

Since f ∈ C3, f ′ ∈ C2, so we can apply Itô again,

d⟨f ′(X), X⟩t = df ′(Xt)dXt = (f ′′(Xt)dXt +
1

2
f ′′′(Xt)d⟨X⟩t)dXt = f ′′(Xt)d⟨X⟩t +

1

2
f ′′′(Xt)d⟨X⟩tdXt = f ′′(Xt)d⟨X⟩t

So, ∫ t

0

f ′′(Xs)d⟨X⟩s = ⟨f ′(X), X⟩t.

August 2015

1.

Consider two pairs of adapted continuous processes (Hi, Xi) defined on two filtered probability spaces,
(Ωi,Fi, (F i

t )0≤t<∞,Pi) for i = 1, 2. Assume that the two pairs have the same law (as two dimensional
processes), and that X1, X2 are semi-martingalees. Show that the two stochastic integrals Ii =

∫
HidXi

have the same law for i = 1, 2.

2.

Consider a binary random variable X such that E[X] = 0. For a given Brownian motion B, construct a
stopping time with property E[T ] < ∞ and such that BT and X have the same distribution. Is the condition
E[X] = 0 necessary for the existence of such a stopping time?

Solution. Let X be a binary random variable. That is

P[X = a] = 1− P[X = b]

for some a ̸= b ∈ R such that

E[X] = aP[X = a] + bP[X = b] = 0 → aP[X = a] + b(1− P[X = a]) → P[X = a] =
b

b− a
.

This implies one of a, b is negative. WLOG, assume a > 0, b < 0. So,

X =

{
a p = b

b−a

b p = a
b−a .

Let Bt be a Brownian motion. Consider the stopping time τ = Ta ∧ Tb where Ta = inf{t ≥ 0 : Bt = a}
and Tb = inf{t ≥ 0 : Bt = b}. Since Bτ

t is a bounded martingale and therefore uniformly integrable, we can
apply the optional sampling theorem,

E[Bτ ] = aP[Ta < Tb] + bP[Tb < Ta] = 0 ⇒ P[Ta < Tb] =
b

b− a
.

So

Bτ =

{
a p = b

b−a

b p = −a
b−a .

Since Bt is BM, B2
t − t is a martingale. For fixed t, we can apply the bounded optional sampling theorem

so that
E[B2

t∧τ ] = E[t ∧ τ ].

Taking the limit as t → ∞ we get
E[B2

τ ] = E[τ ]

by the bounded convergence theorem for the LHS and the monotone convergence theorem for the RHS.
Thus,

E[τ ] = a2P[Ta < Tb] + b2(1− P[Ta < Tb]) < a2 + b2 < ∞.

4
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3.

Show that, for a continuous semimartingale M and continuous adapted process A of bounded variation, with
A0 = 0, we have the following equivalence:

1. M is actually a local martingale with ⟨M⟩ = A

2. for each f ∈ C2
b , we have that

f(Mt)− f(M0)−
∫ t

0

f ′′(Ms)dAs

is a martingale.

Solution. Let f ∈ C2
b . By Itô’s formula,

f(Mt) = f(M0) +

∫ t

0

f ′(Ms)dMs +
1

2

∫ t

0

f ′′(Ms)d⟨M⟩s

(1) → (2) Suppose M is a local martingale with ⟨M⟩ = A. Then,∫ t

0

f ′(Ms)dMs = f(Mt)− f(M0)−
1

2

∫ t

0

f ′′(Ms)dAs.

Since Mt is a local martingale and f ′ is bounded,
∫ t

0
f ′(Ms)dMs is a local martingale. Further,

⟨
∫ t

0

f ′(Ms)dMs⟩ =
∫ t

0

f ′(Ms)
2dAs ≤ CAt < ∞ ∀t ≥ 0

So, f(Mt)− f(M0)− 1
2

∫ t

0
f ′′(Ms)dAs is a martingale.

(2) → (1)

January & August 2016

1.

Let S be an exponential Brownian motion with drift,

St = 1 +

∫ t

0

µSudu+

∫ t

0

SudBu, t ≥ 0,

for some µ ∈ R, where B is the standard Brownian motion. Given ϵ ∈ (0, 1), compute E[τϵ], where τϵ =
inf{t ≥ 0 : St = ϵ}.

Solution.
St = exp((µ− 1)t+Bt)

We can check this using Itô’s formula,

dSt = Std((µ− 1

2
)t+Bt) +

1

2
Std⟨(µ− 1

2
)t+Bt⟩ = St((µ− 1

2
)dt+ dBt +

1

2
dt = St(µdt+ dBt).

This is hitting time of Brownian motion with drift, Girsanov’s theorem.

2.

Let f : R → R be a continuous function. Let W be a Brownian motion of a filtered probability space
(Ω,F , (Ft)0≤t<∞,P). Show that, for each x, the process Mx defined by

Mx
t = f(x+Wt), 0 ≤ t < ∞

is a local sub-martingale if and only if f is convex.
Solution. ⇐ Suppose f is convex. Let 0 ≤ s < t < ∞. Then

E[Mx
t |Fs] = E[f(x+Wt)|Fs] ≥ f(E[x+Wt|Fs]) = f(x+Ws) = Mx

s .

So, Mx
t is a local submartingale.

⇒ Suppose {Mx
t } is a local submartingale. Let A,B ∈ R and λ > 0. Choose x, 0 ≤ a < b such that

such that A = x+ a and B = x− b where and λ = b
a+b and consider the stopping time τ = Ta ∧ T−b where

Ta = inf{t ≥ 0 : Wt = a} and T−b = inf{t ≥ 0 : Wt = −b}. Then, by the optional sampling theorem,

E[Mx
τ ] ≥ E[Mx

0 ]

where

E[Mx
τ ] =

b

a+ b
f(x+ a) +

b

a+ b
f(x− b)

and

Mx
0 = f(x) = f(

b

a+ b
(x+ a) +

a

a+ b
(x− b)) = f(

bx+ ab+ ax− ab

a+ b
) = f(x).

So, f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B), so f is convex.

5
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3.

Consider a filtered probability space (Ω,F , (Ft),P) where the filtration satisfies the usual conditions. On this
space, consider two standard, one dimensional Brownian motions W and B (BM wrt the same filtration).
Assume that ⟨B,W ⟩t = ρt, where ⟨B,W ⟩ is the cross variation of B and W , and ρ is constant. Show that

1. B = W, if ρ = 1

2. B is independent of W if ρ = 0.

Solution.

1. Suppose ⟨B,W ⟩t = t. Consider the process Mt = Bt − Wt. Since Bt,Wt are martingales, Mt is a
martingale. Then since (Bt−Wt)

2 = B2
t − 2BtWt+W 2

t and we know B2
t − t,W 2

t − t and BtWt− t are

local martingales, ⟨B−W ⟩t = 0. Since ⟨B−W ⟩t = lim
n→∞

∞∑
i=1

(Btni ∧t −Wtni ∧t −Btni−1∧t +Wtni−1∧t)
2 = 0,

this implies B −W has finite variation. Thus, since B −W is a local martingale the finite variation,
B −W = 0, so B = W .

2. Suppose ⟨B,W ⟩t = 0. By Lévy’s characterization of Brownian motion, (B,W ) is a 2-dimensional
Brownian motion ⇔ B2

t − t,W 2
t − t, BtWt are local martingales. Since B,W are BM, B2

t − t and W 2
t − t

are local martingales. Since ⟨B,W ⟩t = 0 = 1
2 (⟨B +w⟩t − ⟨B⟩t − ⟨W ⟩t), ⟨B +W ⟩t = ⟨W ⟩t + ⟨B⟩t. So,

B2
t +2BtWt+W 2

t −⟨B⟩t−⟨W ⟩t is a local martingale, so {BW}t is a local martingale. Thus, (B,W ) is
a 2-dimensional BM, so B and W are independent by the definition of 2-dimensional brownian motion.

January 2019

1.

Let W be a one-dimensional BM. Let µ, σ ∈ R and x an initial value. Solve in closed form the equation{
dXt = µXtdt+ σXtdWt

X0 = x.

Solution.
dXt = Xt(µdt+ σdWt)

From this form, we make a guess that Xt = x exp(µt+ σWt) and check using Itô’s formula.

dXt = Xtd(µt+ σWt) +
1

2
Xtd⟨µt+ σWt⟩t = Xt(µdt+ σdWt +

1

2
σ2dt) = Xt((µ+

1

2
σ2)dt+ σdWt)

So, we need a correction of − 1
2σ

2t. Thus, Xt = x exp((µ− 1
2σ

2)t+Wt).

2.

Let W be a standard one-dimensional Brownian motion and M be its running maximum process, i.e.

Mt = max
0≤s≤t

Ws, 0 ≤ t < ∞.

Consider a two-times continuously differentiable function f : {(x,m) : m ≥ 0,−∞ < x ≤ m} → R. Find a
necessary and sufficient condition so that the process Y defined by Yt = f(Wt,Mt), 0 ≤ t < ∞, is a local
martingale.

Partial Solution. For almost all ω, the measure dM(ω) is singular with respect to the Lebesgue measure
with support {t : Wt = Mt}. By Itô’s formula,

dYt = fx(Wt,Mt)dWt + fm(Wt,Mt)dMt +
1

2
fxx(Wt,Mt)dt+ fxm(Wt,Mt)dWtdMt +

1

2
fmm(Wt,Mt)dMtdMt

= fx(Wt,Mt)dWt + fm(Wt,Mt)dMt +
1

2
fxx(Wt,Mt)dt

For Yt to be a local martingale, we need the finite variation parts to vanish, fxx(Wt,Mt) = 0 everywhere
and fm(Wt,Mt) on the support of dM , fm(Wt,Mt) on the diagonal {t : Wt = Mt}. These conditions are
also sufficient.

3.

Consider a finite time horizon T and a RCLL sub-martingale (Mt)0≤t≤T on the filtered probability space
(Ω,F ,P) with filtration (Ft)0≤t≤T . Consider the optimization problem of finding the stopping time τ that
maximizes the expected value M at the (random) time τ, namely the problem

sup
τ a stopping time

E[Mτ ].

Find optimizer τ∗.
Solution. Since Mt is a RCLL sub-martingale, it admits a Doob-Meyer decomposition, Mt = Lt + At

where Lt is a martingale and At is a nondecreasing, predictable process. Since all viable stopping times are
bounded by finite time horizon T , we can apply the bounded optional sampling theorem. For any stopping
time τ , E[Mτ ] = E[Lτ ] + E[Aτ ] = E[L0] + E[Aτ ]. Since At is a nondecreasing process, this implies E[Mτ ] is
maximized for τ = T .

6
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4.

Let (Bt)0≤t<∞ be a standard Brownian motion. Define the random time Tx by

Tx = inf{t ≥ 0 : Bt = x}, x ∈ R.

Compute P[Ta < T−b] and E[Ta ∧ T−b] for a, b > 0.
Solution. Let τ = Ta ∧ T−b. Then, since (Bτ

t )0≤t<∞ is bounded, (Bτ
t ) is a uniformly integrable

martingale. Thus, by the optional sampling theorem,

E[Bτ ] = aP[Ta < T−b] +−b(1− P[Ta < T−b]) = (a+ b)P[Ta < T−b]− b = E[B0] = 0

which implies

P[Ta < T−b] =
b

a+ b
.

Since (Bt) is a Brownian motion, B2
t − t is a martingale. Again, applying the bounded optional sampling

theorem,
E[B2

t∧τ ] = E[t ∧ τ ].

Then letting t → ∞, by the bounded convergence theorem for the LHS and the monotone convergence
theorem for the RHS,

E[B2
τ ] = E[τ ]

E[τ ] = E[B2
τ ] = a2P[Ta < T−b] + b2(1− P[Ta < T−b])

= (a2 − b2)

(
b

a+ b

)
+ b2 = (a− b)(a+ b)

b

a+ b
+ b2 = (a− b)b+ b2 = ab.

5.

Let (Bt) be a standard Brownian motion. Show that

lim
t→∞

√
tP[Bs ≤ 1,∀ s ≤ t] =

√
2

π
.

Solution. Let Mt be the running maximum process of the Brownian motion. Then

P[Bs ≤ 1, ∀ s ≤ t] = P[Mt ≤ 1] = P[|Bt| ≤ 1]

since Mt ∼ |Bt|. So,

lim
t→∞

√
tP[Bs ≤ 1,∀ s ≤ t] = lim

t→∞

√
2P[|Bt| ≤ 1] = lim

t→∞

√
t

2√
2πt

∫ 1

0

exp(−x2/2t) dx

=
2√
2π

lim
t→∞

∫ 1

0

exp(−x2/2t) dx =

√
2

π

∫ 1

0

lim
t→∞

exp(−x2/2t) dx =

√
2

π
.

where we can interchange the limit and integral due to the bounded convergence theorem.

6.

Let (Bt)t∈[0,∞) be a B, and let (Xt)t≥0 be its Lévy transform given

Xt =

∫ t

0

sgn(Bu)dBu,

1. Show that X is a Brownian motion.

2. Show that the random variables Bt and Xt are uncorrelated.

3. Show that Bt and Xt are not independent.

Solution.

1. To show that X is a Brownian motion, we will show that Xt is a martingale and ⟨X⟩t = t. Let
0 ≤ s < t < ∞. Consider a sequence of partitions of [0,∞) denoted ∆n →Id. Then for Xn

t =
n∑

k=1

sgn(Btk ∧ t)(Btk∧t −Btk−1∧t), we consider the conditional expectation,

E[Xn
t |Fs] =

∞∑
k=1

sgn(Btk∧t)E[(Btk∧t −Btk−1∧t)|Fs] =

∞∑
k=1

sgn(Btk∧s))(Btk∧s −Btk−1∧s) = Xn
s .

So Xn is a martingale. Then Xn
t → Xt ∀ t ∈ [0,∞), so X is also a martingale.

Or, if we have that Xt is a semi-martingale, since Xt =
∫ t

0
sgn(Bs)dBs, dXt = sgn(Bt)dBt, so Xt is a

local martingale.

Now, we want ⟨X⟩t.

d⟨X⟩t = dXtdXt = (sgn(Bt)dBt)(sgn(Bt)dBt) = dBtdBt = d⟨B⟩t = dt

So, ⟨X⟩t = t. Thus, by Lévy’s characterization of BM, X is a Brownian Motion.

7
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2. To show that Bt and Xt are uncorrelated, Cov(Xt, Bt) = 0 First, consider

XtBt =

∫ t

0

XudBu +

∫ t

0

BudXu +

∫ t

0

sgn(Bu)du.

The first two terms are local martingales with quadratic variations in L2,

⟨
∫ t

0

XudBu⟩ =
∫ t

0

X2
udu

⟨
∫ t

0

BudXu⟩ =
∫ t

0

B2
udu

so they are true martingales. So,

Cov(XtBt) = E[XtBt] = E[
∫ t

0

XudBu +

∫ t

0

BudXu +

∫ t

0

sgn(Bu)du] = E[
∫ t

0

sgn(Bu)du] =

∫ t

0

E[sgn(Bu)]du = 0.

3. To show that Bt and Xt are not independent, we calculate E[XtB
2
t ]. First, since dB2

t = 2BtdBt + dt
by Itô,

XtB
2
t = 2

∫ t

0

XuBudBu +

∫ t

0

Xudu+

∫ t

0

B2
udXu + 2

∫ t

0

Busgn(Bu)du.∫ t

0
XuBudBu and

∫ t

0
B2

udXu are true martingales, so

E[XtB
2
t ] = E[

∫ t

0

(Xu + 2Busgn(Bu))du] = E[
∫ t

0

(Xu + 2|Bu|)du] =
∫ t

0

E[Xu + 2|Bu|]du.

Since E[Xu] = 0,

E[XtB
2
t ] = 2

∫ t

0

E[|Bu|]du > 0.

However, E[Xt]E[B2
t ] = 0, so Cov(Xt, B

2
t ) ̸= 0 which implies Xt and Bt are not independent.

January 2010

5.

Let {Bt}t∈[0,∞) be a standard Brownian Motion and let {Ht}t∈[0,∞) be a progressively measurable process
such that

∀ t ≥ 0,

∫ t

0

H2
udu < ∞, and

∫ ∞

0

H2
udu = ∞.

For σ > 0, show that
∫ τ

0
HudBu ∼ N (0, σ2), where τ = inf{t ≥ 0 :

∫ t

0
H2

udu = σ2}.
Solution. Let Mt =

∫ t

0
HudBu. Since Ht is progressively measurable with the above properties, Mt is a

local martingale. Then ⟨M⟩t =
∫ t

0
H2

udu. Consider the exponential martingale

Xt = exp(iuMt +
1

2
u2⟨M⟩t).

Then since Mτ
t is bounded and therefore uniformly integrable, we may apply the optional sampling theorem

E[exp(iuMτ )] =
1

exp( 12u
2σ2)

= exp(−1

2
u2σ2)

Since the characteristic function of a normal random variable is φ(t) = exp(iµt − 1
2σ

2t2), this implies∫ τ

0
Hu dBu ∼ N (0, σ2).

August 2010

3.

Let (Ω,F ,P) be a probability space, and let C be a non-empty family of sub-σ-algebras of F . For a random
variable X in L1, prove that the family

χ = {E[X|G] : G ∈ C}

is uniformly integrable.
Solution. The family {X} is uniformly integrable, so there exists a convex, nondecreasing test function

φ such that E[φ(X)] < ∞. Then for G ∈ C. E[φ(E[X|G])] ≤ E[E[φ(X)|G]] = E[φ(X)] < ∞. Thus, χ is
uniformly integrable.
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