Probability II Prelim Problems Luisa Velasco

August 2013

1.
Let {B;} be the Brownian motion, and let o be the last visit to the level 0 before t =1, i.e.,

o=sup{t <1:B; =0}
1. Show that o is not a stopping time

2. Show that
d X2
A N 7>

where X and Y are independent unit normals.
Solution.

1. Since B; is BM, B? —t is a martingale. For the sake of contradiction, suppose o is a stopping time.
Then since ¢ is bounded, we may apply the Bounded optional sampling theorem,

E[B2 — 0] = 0= E[o] = 0.

> —

This, implies P[o = 0] = 1. However, we know that o has an arcsine distribution, so
2 .
Plo = 0] = — arcsin(0) — 0,
T

a contradiction,

2. {o <t} = {sup;< <1 Bs < 0} U {infi<s<1 Bs > 0}, so since (sup,<,<1 Bs — B, Bt) ~ (|B1 — By, By)
and |B; — By| and B; are independent.
Plo < ] = 2P sup B, < 0] = 2P[ sup (B, — B,) < —B;] = 2P[My_, < —B,] = 2P(|B; — B| < —B]
t<s<l1 t<s<1
=P[|B1 — B| < |Bi[] = P[(B1 — B,)* < Bj]

Since By — By ~ N(0,(1 —t)) ~ I — X, and B; ~ N(0,t) ~ v/tY where X,Y ~ N(0,1). Then

X2

Plo <t] =P[(1-t)X? < tY?] = P[W <

1].

2

X
SOO’Nw.

2.

Let M and N be two continuous local martingales. Show that £(M)E(N) is a local martingale if and only
if M N is a local martingale.

Solution. By the definition of quadratic covariation, M N is a local martingale if and only if (M, N) = 0.
Further, E(M)E(N) = E(M+N)E((M,N)) = E(M+N) exp({(M, N)). Since M+ N is a local martingale, & is
a local martingale. Thus, if M N is a local martingale, (M, N) = 0,50 E(M)E(N) = E(M+N)e® = E(M+N),
so E(M)E(N) is a local martingale.

¢
EQDEW) = [ EQDEW)ALN) =0
0
Since E(M)E(N) > 0, (M, N) must be constant (7). So, since (M, N)y =0, (M,N) =0, so MN is a local

martingale.

3.

Let {B;} be a Brownian motion. For ¢ € R, compute
P[Bt +ct < ].,V t> 0]

Solution. Let X; = By + ¢t. For ¢ > 0, P[B; + ¢t < 1,V ¢ > 0] = 0. Thus, assume ¢ < 0. For Brownian
motion By, we know that the exponential martingale exp(AB; — %)\zt) is a martingale for A € R. Then, we
can choose A = —2¢, so that M; = exp(—2c(B; + ct)) = exp(—2c¢X;). Since ¢ < 0, M, is a martingale such
that M; — 0 and ¢t — oco. Define 7 = inf{t > 0 : M; = exp(—2¢)}. Since M is bounded and therefore
uniformly integrable, by the optional sampling theorem

E[M,] = P[r < oo] exp(—2¢) + P[r = 00](0) = E[My] = 1 — P[r < oo] = exp(2¢)

PX: <1V t>0]=PsupX; < 1] = P[sup My < exp(—2¢)] =1 —P[r < oo] = 1 — exp(2¢).
>0 >0
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January 2014
1.

Let (M¢)o<i<r be a submartingale and let A > 0. Show that

AP(Omta&X M, > )‘) < E[Mt maxo<¢<T Mt>)\]
1. Consider a one-dimensional Brownian motion at By = 0. Let u,v : [0,00) — R be such that u is C!,
strictly increasing and u(0) = 0. Assume also that v(t) # 0 for each t and v has bounded variation.

Show that the process
Xy = v(t) By

is a semi-martingale and the martingale part is fo 5)d By s).-
2. Show that the martingale part is a Brownian motion if and only if v?(s)u’(s) = 1 for each s

3. Find u, v such that X defined above is an Orstein-Uhlenbeck process with parameter 3, dX; = S X dt+
d~y; for some Brownian motion .

Solution. Let (M;)o<i<r be a submartingale. Then

/\P[()réltang Mt Z >\] == ]E[)\]-maxogtST Mtz)\] S ]E[Mt]-maxostST MtZ)\]-

1. First, let’s show that M; = fo 5)dB,s) is a martingale. Let r < t. Let {A,} be a sequence

of partitions such that A, —Id. Then let M = > v(tg)(Beat — Bt_iat). So, E[MF,] =

Z U(tk)E[(Btk/\t — Btk,l/\t)|-/—"] Z (tk)(Btk/\T‘ — Btkfl/\r) = M,:.I Taklng the llmlt as n — o,
k=1 k=1

M; is a martingale. Now, we want to show that X; — fo 5)dBy(s) is of finite variation. To do this we
look at the total variation,

t; ti—1
sup Z|v Byt / v(8)dBy sy — v(ti—1)Bu,_y) —|—/ v(8)dBys)|
0 0

t;
—S“PZ| Bu(t;y —vo(ti- 1)Bu<ti_1))+/ v(s)dBy(s)|

ti—1

2. By the Lévy characterization of a Brownian motion, we just need ( fo 5)dBy(s)) = t. Let My =
fo dBu(s Then d(M;) = dMdM; = v(t)*>dBy)dByq) = v(t)*du(t), so (M), = fgv(s)Qdu(s) =
fo ds = t. Since v2(s),u/(s) > 0V s € [0,00), v(s)%u/(s) =1V s.

3. Since X; is a semimartingale, we can apply Ito’s formula,

dX; = ’U(t)dBu(t) + Bu(t)dv(t).

To be a OU process, need fo 5)dBy(s) to be a Brownian motion, which implies v2u/ =1 from above
and By, )dv(t) = Bu(t)By)dt. This occurs when dv(t) = Bo(t)dt, so v(t) = Ce’t, C # 0. Then since
v2u' = 1, implies u'(t) = C~2e~2A. Thus, u(t) = e 20t £ D. Since u(0) = 0, D =

u(t) = 2C’2B(1 —e728t),

1
2025 302> S0

2.

(Range of Brownian Motion) Let B be a one-dimensional BM starting at zero. Define
Sy =maxB;, I =inf By, 0.=inf{t:S;—1I; =c},
s<t s<t

for some ¢ > 0.

1. Show that for each A, the process

My = cosh(\(S; — By)) exp(——)
is a martingale.
2
2. Prove that E[exp(—%)] = H%sh()\c

Solution
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1. Let 0 < s < t.

Elexp(A(Si — By))|Fs] = Elexp(A((S: — By) — (Ss — Bs) + (S5 — Bs)) | Fs]
= exp(A(Ss — By))Elexp(A((Se — Ss) — (B — Bs))| ]

Efexp(A((S; — S4) — (B; — B))|Fs] = Elexp(A(|B: — B|)] = \/% /0“ P

z2 A2(t—s)
e TATT T

dzx

2 A2(t—s) /
= —€ 2 2
\/27T(t— s) 0
. o e A/I=5\2
= 72 6X2(12/ =) / e (\/m V2 dx
27(t — s) 0

2 2 t—s o0 2
. S )\/Q(t—s)/ e " du
\/27T(t— S) 0

2 A2¢-s) /T A2(t—s)
e 25§:€ 2.

= ﬁ
A2 (t—s)
2

Similarly, E[exp(—A(St — B:))|Fs] = exp(A(Ss — Bs))e™ =z . Thus,

A2(t—s)
2

E[cosh(A(S: — Bt))|Fs] = cosh(A(Ss — Bs))e

which implies

A2(t—s) =22t
2 2

E[M¢|Fs] = cosh(A(Ss — Bs))e e = M,.

So M, is a martingale.

2. The stopped martingale Mte ¢ is bounded and thus uniformly integrable. So, by the optional sampling
theorem,

E[My,] = E[cosh(A(Ss, — Bo.) exp(—)\zec] =E[My] =1

AQGC] B 1
2 ' E[cosh(\(Ss, — By, ))]

= Elexp(—
Since By, = Sy, or By, = Iy, with equal probability (by the symmetry of BM),

E[cosh(A(Sg, — By,)] = % + %cosh()\c).
So,
%0, 2

Elexp(= 2 )= 1+ cosh(Ac)’

August 2014

2.

Let (W;)o<t<1 a BM (defined only up to time one). Show that the two dimensional vector

(Wl, /O 1 sgn(Ws)dWs>

has the following properties:
1. both marginals are normal N(0,1)
2. however, it is NOT a joint normal random vector

Solution.

1. From the definition of BM, Wy = W, —W; ~ N(0,1). Let A,, be a sequence of partitions of [0, 1] such

n

that A, — Id. Then M* = > sgn(Wy,)(Wy, — Wi, ). From the definition of BM, these increments
i=1

Wy, — Wy, _, are independent and sgn(Wy,)(Wy, =Wy, ) ~ N(0,¢; —t;—1. Thus, since A,, is a partition

of [0,1], M* ~ N(0,1) V n. Thus, since M]* — M; as n — oo, M; ~ N(0,1).

3.

(Stratonovich integral and chain rule) For two continuous semi-martingales X and Y (on the same space
and filtration), we define the Stratonovich integral

t t
1
/XsodYS:/ X,dYs + =(X,Y),,
0 0 2
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where fot X,dY, represents the Ito integral. Show that if f € C3, and X is a continuous semimartingale,
then we have the chain rule

F(X0) = F(Xo) + / F(X,) 0 dX..

Solution. Since f € C? and X is a a continuous semi-martingale, we can apply It6’s formula,
t 1 t
£ = 500+ [ Fax. g [ e,
0 0

Since fot [(Xs)odXs = fot f1(Xs)dXs + 2(f/(X), X),, it is sufficient to show that

/0 F(X,)d(X)s = (f/(X), X ).
Since f € C3, f' € C?, so we can apply It again,
A (X), X = dF (X)X, = (7" (X)X, + 3" (XA )X, = ' (X)d(X), + 3 7 (X)d(X)dX, = " (X)d(X),

So,
/0 FUX)AX), = (£1(X), X),.

August 2015
1.

Consider two pairs of adapted continuous processes (H®, X*) defined on two filtered probability spaces,
(0, Fiy (F)o<t<oo,P;) for i = 1,2. Assume that the two pairs have the same law (as two dimensional
processes), and that X', X? are semi-martingalees. Show that the two stochastic integrals I* = [ H'dX®
have the same law for i = 1, 2.

2.

Consider a binary random variable X such that E[X] = 0. For a given Brownian motion B, construct a
stopping time with property E[T] < co and such that By and X have the same distribution. Is the condition
E[X] = 0 necessary for the existence of such a stopping time?

Solution. Let X be a binary random variable. That is

for some a # b € R such that

E[X] = aP[X = a] + bP[X =] =0 = aP[X =a] +b(1 ~P[X = a]) » P[X = a] = . —.

This implies one of a, b is negative. WLOG, assume a > 0,b < 0. So,

_ b
x=J% P~ =
b p==.
Let B; be a Brownian motion. Counsider the stopping time 7 = T, A T} where T, = inf{t > 0: B; = a}

and T, = inf{t > 0: B; = b}. Since B} is a bounded martingale and therefore uniformly integrable, we can
apply the optional sampling theorem,

b
E[B,] = aP[T, < T)] + bP[T} < T,] = 0= BT, < T}] = -—.

So
b
BT:{CL P=1=

Q

b p=—=.

a

]

Since By is BM, B? —t is a martingale. For fixed ¢, we can apply the bounded optional sampling theorem
so that
E[B},,] = E[t A 7]
Taking the limit as t — oo we get
E[B}] = E[r]

by the bounded convergence theorem for the LHS and the monotone convergence theorem for the RHS.
Thus,
E[r] = a*P[T, < Ty] + b*(1 — P[T, < Ty]) < a® + b* < .
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3.

Show that, for a continuous semimartingale M and continuous adapted process A of bounded variation, with
Ay = 0, we have the following equivalence:

1. M is actually a local martingale with (M) = A

2. for each f € C?, we have that

FOM) — F(My) / (M)A,

is a martingale.

Solution. Let f € CZ. By Ito’s formula,

F(0My) = (M) /f dM+/f” (M),

(1) = (2) Suppose M is a local martingale with (M) = A. Then,

| rnyant, = s - 0to) - 5 [ pro0n)as
0 0

Since M; is a local martingale and f’ is bounded, fo f'(Ms)dMs is a local martingale. Further,
/f s)dM) /f )2dA, < CAp < 00 VYt >0

So, f(My) — f(M, 1 fo f"(Ms)dA, is a martingale.
(2) = (1)

January & August 2016
1.

Let S be an exponential Brownian motion with drift,
t t
Sy =1 +/ wSydu + S.dB,, t>0,
0 0

for some p € R, where B is the standard Brownian motion. Given € € (0, 1), compute E[r.], where 7. =
inf{t >0:5; = e}
Solution.
Sy = exp((u — 1)t + By)

We can check this using It6’s formula,
1 1 1 1 1
dS; = Sid((p — i)t + By) + iStd«,u - i)t + Bi) = Si((p — §)dt +dB; + §dt = Si(pdt + dBy).

This is hitting time of Brownian motion with drift, Girsanov’s theorem.

2.

Let f : R — R be a continuous function. Let W be a Brownian motion of a filtered probability space
(Q, F, (Ft)o<t<oo, P). Show that, for each x, the process M* defined by

MP =flz+Wy), 0<t<oo

is a local sub-martingale if and only if f is convex.
Solution. < Suppose f is convex. Let 0 < s < t < co. Then

So, M is a local submartingale.

= Suppose {M}'} is a local submartingale. Let A,B € R and A > 0. Choose z,0 < a < b such that
such that A =2 +a and B = 2 — b where and \ = abb =T, NT_, where
T, =inf{t > 0: Wy =a} and T_, = inf{t > 0: W; = —b}. Then, by the optional sampling theorem,

E[M?] > E[Mg]
where " b
EIMZ] = — o f@+a)+ ——f(w =)
and " bxr +ab+ ax — ab
Mg = £(&) = f(—p o+ a) + — (o — b)) = SIS — ),

So, fAA+ (1=XN)B) < Af(A)+ (1 =N f(B), so f is convex.
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3.

Consider a filtered probability space (2, F, (F;),P) where the filtration satisfies the usual conditions. On this
space, consider two standard, one dimensional Brownian motions W and B (BM wrt the same filtration).
Assume that (B, W), = pt, where (B, W) is the cross variation of B and W, and p is constant. Show that

1. B=W,ifp=1

2. B is independent of W if p = 0.

Solution.

1. Suppose (B,W); = t. Consider the process M; = By — W;. Since By, W; are martingales, M; is a
martingale. Then since (B; — W;)? = B? —2B,W, + W2 and we know B? —t, W? —t and B;W, —t are
local martingales, (B — W); = 0. Since (B—W); = nlgl;o gol(Bt?M —Winae = Bin ae+ Wt{il/\t)Q =0,

this implies B — W has finite variation. Thus, since B — W is a local martingale the finite variation,
B-W=0,s0 B=W.

2. Suppose (B,W); = 0. By Lévy’s characterization of Brownian motion, (B,W) is a 2-dimensional
Brownian motion < B? —t, W2 —t, ByW; are local martingales. Since B, W are BM, B —t and W2 —¢
are local martingales. Since (B, W), =0 = 1((B+w); — (B); — (W), (B+ W), = (W), + (B):. So,
B2 +2B,W;+ W2 —(B); — (W), is a local martingale, so { BW}, is a local martingale. Thus, (B, W) is
a 2-dimensional BM, so B and W are independent by the definition of 2-dimensional brownian motion.

January 2019

1.

Let W be a one-dimensional BM. Let 1,0 € R and x an initial value. Solve in closed form the equation
dXt = ,uXtdt + O'Xtth
XO =x.

Solution.
dXt = Xt(udt + O'th)

From this form, we make a guess that X; = zexp(ut + cW;) and check using It6’s formula.
1 1 1
dXt = Xtd(ﬂt + O'Wt) + §Xtd<ut + O'Wt>t = Xt(p,dt + O'th + §O'th) = Xt((,u + 50’2)(# + O'th)

So, we need a correction of —102t. Thus, X; = zexp((p — 30°)t + Wy).

2.

Let W be a standard one-dimensional Brownian motion and M be its running maximum process, i.e.

M; = max W,, 0<t<oo.
0<s<t
Consider a two-times continuously differentiable function f : {(z,m): m > 0,—c0 < z < m} — R. Find a
necessary and sufficient condition so that the process Y defined by Y; = f(Wy, M;), 0 <t < o0, is a local
martingale.
Partial Solution. For almost all w, the measure dM (w) is singular with respect to the Lebesgue measure
with support {t : W; = M;}. By It6’s formula,

1 1
Y, = fo(Wy, My)dWy + fr, (W, My)d M, + §fmm(Wt7Mt)dt + fom (W, My)dWidM; + ifmm(Wh M,)dM,dM,
1
= fo(Wy, My)dWy + frn(Wy, My)d M, + ifm(Wth)dt

For Y; to be a local martingale, we need the finite variation parts to vanish, f,.(W;, M;) = 0 everywhere
and f,, (W, My) on the support of dM, f,,(W;, M;) on the diagonal {t : Wy = M;}. These conditions are
also sufficient.

3.

Consider a finite time horizon T and a RCLL sub-martingale (M;)o<;<7 on the filtered probability space
(Q, F,P) with filtration (F;)o<i<r. Consider the optimization problem of finding the stopping time 7 that
maximizes the expected value M at the (random) time 7, namely the problem
sup E[M.].
T a stopping time
Find optimizer 7.

Solution. Since M; is a RCLL sub-martingale, it admits a Doob-Meyer decomposition, My = L; + A;
where L; is a martingale and A; is a nondecreasing, predictable process. Since all viable stopping times are
bounded by finite time horizon T', we can apply the bounded optional sampling theorem. For any stopping
time 7, E[M,] = E[L.] + E[A;] = E[Lo] + E[A;]. Since A; is a nondecreasing process, this implies E[M,] is
maximized for 7 =T.
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August 2009
4.

Let (Bt)o<t<oo be a standard Brownian motion. Define the random time T, by
T,=inf{t >0: B, =z}, x €R.

Compute P[T, < T_p] and E[T, A T_}] for a,b > 0.
Solution. Let 7 = T, A T_;. Then, since (B])o<i<co is bounded, (Bf) is a uniformly integrable
martingale. Thus, by the optional sampling theorem,

E[B;] =aP[T, <T_p|+—b(1 —=P[T, <T-p]) = (a+ 0PI, <T_] —b=E[By] =0
which implies
b
a+b
Since (B;) is a Brownian motion, B? —t is a martingale. Again, applying the bounded optional sampling
theorem,

P[Ta < T,b] =

E[B},,] = Elt A7)

Then letting t — oo, by the bounded convergence theorem for the LHS and the monotone convergence
theorem for the RHS,
E[B2 = E[r]

E[r] = E[B?] = a*P[T, < T_] + b*(1 — P[T, < T_))

=<a2—62)(aib)+b2 (a—b)(a+b)%+b2 (a—b)b+b* = ab.

9.
Let (B¢) be a standard Brownian motion. Show that

tl'ggo\/{]P’[Bs <1,Vs<t]= \/z
Solution. Let M; be the running maximum process of the Brownian motion. Then
P[B, <1, Vs <t]=PM <1 =P[|B] < 1]
since M ~ |By|. So

lim VIP[B, <1,V s <t] = hm fP[|Bt\<1]— hm \[7/ exp(—2?/2t) d

t—o00
2y exp(—22/2t) dox =/ = / lim e z?/2t) d \/5
= 11m X Xr = 1m X T = —.
2 t—o0 0 p p s

where we can interchange the limit and integral due to the bounded convergence theorem.

6.
Let (Bi)tcjo,00) be a B, and let (X;);>0 be its Lévy transform given

t
Xt:/ sgn(B,)dB,,
0

1. Show that X is a Brownian motion.

2. Show that the random variables B; and X; are uncorrelated.
3. Show that B; and X; are not independent.

Solution.

1. To show that X is a Brownian motion, we will show that X; is a martingale and (X); = ¢. Let
0 < s <t < oo. Consider a sequence of partitions of [0,00) denoted A,, —Id. Then for X' =

n
> sgn(By, At)(Biat — Bt at), we consider the conditional expectation,

k=1
Xn|]'— Z sgn Bfk/\f Btk/\t - Btk,lAt)|-7:s] = Z Sgn(Btk/\s))(Btk/\s - Btk,l/\s) = X:-
k=1 k=1

So X™ is a martingale. Then X}' — X, V ¢ € [0,00), so X is also a martingale.

Or, if we have that X; is a semi-martingale, since X; = fo sgn(Bs)dBs, dX; = sgn(Bt)dBy, so X; is a
local martingale.

Now, we want (X);.

So, (X); =t. Thus, by Lévy’s characterization of BM, X is a Brownian Motion.
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2. To show that B; and X; are uncorrelated, Cov(X;, B;) = 0 First, consider

¢ ¢ t
X By =/ XudB, +/ BydX, +/ sgn(By)du.
0 0 0

The first two terms are local martingales with quadratic variations in L2,

t t
</ XudBu>:/ X2du
0 0
t

t
</ Buqu>:/ B2du
0 0

so they are true martingales. So,
t t t t t
Cov(X,B,) = E[X,B,] = E| / X,dB, + / BudX, + / sgn(Bu)du] = E / sgn(Bu)du] = / Efsgn(Bu)]du = 0.
0 0 0 0 0
3. To show that B; and X; are not independent, we calculate E[X;B?]. First, since dB? = 2B;dB; + dt

by Ito,
t t t t
X, B? :2/ XuBudBu+/ Xudu+/ Bgdxu+2/ Busgn(By)du.
0 0 0 0

fot X,B,dB, and fot B2dX, are true martingales, so
t ¢ t
E[X;B? = E[/ (Xy + 2Bysgn(By))du] = E[/ (Xy + 2|By|)du] = / E[X, + 2|B.||du.
0 0 0

Since E[X,] =0,
t
E[X;B}] = 2/ E[|By|]du > 0.
0

However, E[X,|E[B?] = 0, so Cov(X;, B?) # 0 which implies X; and B; are not independent.

January 2010
5.

Let {Bi}iejo,00) be a standard Brownian Motion and let {H};c[0,00) be a progressively measurable process
such that

t [oe]
Vit>0, / HZ2du < co, and / H2du = cc.
0 0

For o > 0, show that [ H,dB, ~ N(0,0%), where 7 = inf{t > 0: fot H2du = o0?}.
Solution. Let M; = fg H,dB,. Since H; is progressively measurable with the above properties, M; is a

local martingale. Then (M), = f(f H2du. Consider the exponential martingale
. 1,
X; = exp(iuMy; + JU (M)).

Then since M is bounded and therefore uniformly integrable, we may apply the optional sampling theorem

1 1
) = exp(—=u?0?)

Efexp(iuM,)] = ———
[exp(iudy)] exp(3u?o? 2

Since the characteristic function of a normal random variable is ¢(t) = exp(iut — %0%2), this implies
fOT H, dB, ~ N(0,0?).

August 2010

3.

Let (Q, F,P) be a probability space, and let C be a non-empty family of sub-c-algebras of 7. For a random
variable X in £', prove that the family

x =1{E[X|G]: G €C}

is uniformly integrable.

Solution. The family {X} is uniformly integrable, so there exists a convex, nondecreasing test function
¢ such that E[p(X)] < co. Then for G € C. E[p(E[X|G])] < E[E[p(X)|F]] = E[p(X)] < oo. Thus, x is
uniformly integrable.



